- #1
evinda
Gold Member
MHB
- 3,836
- 0
Let $\lambda$ be a positive number and $n$ a natural number. I want to show that
$$\int_{-\infty}^{+\infty} x^{2n} e^{-2 \lambda x^2} dx<+\infty.$$
There is the following hint: $e^{\lambda x^2} \geq \frac{1}{n!}(\lambda x^2)^n$, thus $x^{2n} e^{-\lambda x^2}\leq \frac{n!}{\lambda^n}$.I have done the following:We have that $$e^{2 \lambda x^2} \geq \frac{(2 \lambda x^2)^n}{n!}.$$
Then
$$e^{-2 \lambda x^2} \leq \frac{n!}{(2 \lambda x^2)^n} \Rightarrow x^{2n} e^{-2 \lambda x^2} \leq \frac{n!}{2^n \lambda^n}$$But the integral $\int_{-\infty}^{+\infty} \frac{n!}{2^n \lambda^n} dx$ isn't finite. Is it?
So have I done something wrong? Or can we not use the hint? (Thinking)
$$\int_{-\infty}^{+\infty} x^{2n} e^{-2 \lambda x^2} dx<+\infty.$$
There is the following hint: $e^{\lambda x^2} \geq \frac{1}{n!}(\lambda x^2)^n$, thus $x^{2n} e^{-\lambda x^2}\leq \frac{n!}{\lambda^n}$.I have done the following:We have that $$e^{2 \lambda x^2} \geq \frac{(2 \lambda x^2)^n}{n!}.$$
Then
$$e^{-2 \lambda x^2} \leq \frac{n!}{(2 \lambda x^2)^n} \Rightarrow x^{2n} e^{-2 \lambda x^2} \leq \frac{n!}{2^n \lambda^n}$$But the integral $\int_{-\infty}^{+\infty} \frac{n!}{2^n \lambda^n} dx$ isn't finite. Is it?
So have I done something wrong? Or can we not use the hint? (Thinking)