- #1
suspenc3
- 402
- 0
[tex] \int_0^* \frac {dz}{z^23Z +2}[/tex]
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{z^2+3Z+2}[/tex]
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{(z+3/2)^2 -1/4}[/tex]
let u=z+3/2
du=dz
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{du}{(u)^2 -1/4}[/tex]
[tex] = \frac{1}{2(1/2)}ln|\frac{u-1/2}{u+1/2}[/tex]
[tex] = ln |\frac{z+1}{z+2}| \right]_0^*[/tex]
[tex] = -ln \frac{1}{2}[/tex]
this is one of the first of these I am doing so bear with me if its horrible wrong
EDIT:* denotes infinite..PS is there a latex for infinite?
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{z^2+3Z+2}[/tex]
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{(z+3/2)^2 -1/4}[/tex]
let u=z+3/2
du=dz
[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{du}{(u)^2 -1/4}[/tex]
[tex] = \frac{1}{2(1/2)}ln|\frac{u-1/2}{u+1/2}[/tex]
[tex] = ln |\frac{z+1}{z+2}| \right]_0^*[/tex]
[tex] = -ln \frac{1}{2}[/tex]
this is one of the first of these I am doing so bear with me if its horrible wrong
EDIT:* denotes infinite..PS is there a latex for infinite?
Last edited: