- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Again, sorry for posting this late. Thanks to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Let $H$ and $K$ be subgroups of $G$. Show that $H\cap K$ is a subgroup of $G$. Furthermore, show that this is true for any arbitrary intersection of subgroups of $G$; i.e. if $\{H_{\alpha}\}$ is a collection of subgroups of $G$, then $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of $G$.
-----
-----
Problem: Let $H$ and $K$ be subgroups of $G$. Show that $H\cap K$ is a subgroup of $G$. Furthermore, show that this is true for any arbitrary intersection of subgroups of $G$; i.e. if $\{H_{\alpha}\}$ is a collection of subgroups of $G$, then $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of $G$.
-----