- #1
WHOAguitarninja
- 20
- 0
Aye...title should say in R^2, sorry about that.
I'm hitting somewhat of a wall in my understanding of a theorem (or rather a special case of a theorem). The theorem as stated in the book is as follows.
The Inverse FUnction Theorem in the Plane
Let O be an open subset of the plane R^2 and suppose that the mapping F: O[tex]\rightarrow[/tex]R[tex]^{2}[/tex] is continuously differentiable. Let (x, y) be a point in O at which the derivative matrix DF(x,y) is invertible.
Then there is a neighborhood U of the point (x,y) and a neighborhood V of its image F(x,y) such that F: U[tex]\rightarrow[/tex]V is one to one and onto.
The theorem goes on to talk about the inverse functions, but that's not where I'm getting stuck. My problem is this. Consider the function F(r,[tex]\theta[/tex]) = (r*cos[tex]\theta[/tex], r*sin[tex]\theta[/tex]).
The determinant of the derivative matrix of this function is just r, so the theorem seems that it should only break down at r=0. However consider the point (r, 2*pi)It does not seem to me that it's 1-1 in a neighborhood around this point, which seems to contradict the theorem.
Where am I misunderstanding things. Is the mapping actually 1-1 here? It seems not to me as it seems to me if you just let theta go to infinity it circles the same ring in the image. I understand that if you restrict it to a ring then it invalidates the theorem as the neighborhood then isn't open due to the ring being thin. But I don't see any way to get around the looping problem.
I'm hitting somewhat of a wall in my understanding of a theorem (or rather a special case of a theorem). The theorem as stated in the book is as follows.
The Inverse FUnction Theorem in the Plane
Let O be an open subset of the plane R^2 and suppose that the mapping F: O[tex]\rightarrow[/tex]R[tex]^{2}[/tex] is continuously differentiable. Let (x, y) be a point in O at which the derivative matrix DF(x,y) is invertible.
Then there is a neighborhood U of the point (x,y) and a neighborhood V of its image F(x,y) such that F: U[tex]\rightarrow[/tex]V is one to one and onto.
The theorem goes on to talk about the inverse functions, but that's not where I'm getting stuck. My problem is this. Consider the function F(r,[tex]\theta[/tex]) = (r*cos[tex]\theta[/tex], r*sin[tex]\theta[/tex]).
The determinant of the derivative matrix of this function is just r, so the theorem seems that it should only break down at r=0. However consider the point (r, 2*pi)It does not seem to me that it's 1-1 in a neighborhood around this point, which seems to contradict the theorem.
Where am I misunderstanding things. Is the mapping actually 1-1 here? It seems not to me as it seems to me if you just let theta go to infinity it circles the same ring in the image. I understand that if you restrict it to a ring then it invalidates the theorem as the neighborhood then isn't open due to the ring being thin. But I don't see any way to get around the looping problem.