- #1
Bipolarity
- 776
- 2
I've been wondering whether the Laplace transform is injective. Suppose I have that
[tex] \int^{∞}_{0}e^{-st}f(t)dt = \int^{∞}_{0}e^{-st}g(t)dt [/tex] for all s for which both integrals converge. Then is it true that [itex] f(t) = g(t) [/itex] ? If so, any hints on how I might prove it?
Thanks!
BiP
[tex] \int^{∞}_{0}e^{-st}f(t)dt = \int^{∞}_{0}e^{-st}g(t)dt [/tex] for all s for which both integrals converge. Then is it true that [itex] f(t) = g(t) [/itex] ? If so, any hints on how I might prove it?
Thanks!
BiP