MHB Is the Kernel of a Group Homomorphism isomorphic to $\mathbb{Q}^2$?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

For $n\in \mathbb{N}$ let $GL_n(\mathbb{Q})$ the group of all invertible matrices in $\mathbb{Q}^{n\times n}$. We have the subset \begin{equation*}G=\left \{\begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right \}\end{equation*} of $GL_3(\mathbb{Q})$ and the map $\Phi :G\rightarrow GL_2(\mathbb{Q})$ with $\Phi : \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto A$.

I want to show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition. The kernel of $\Phi$ is the following:
\begin{align*}\ker \Phi&=\{g\in G\mid \Phi (g)=I_2\} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \ \text{ with } \ A\in GL_2(\mathbb{Q}), \ a, b, \in \mathbb{Q} \mid A=I_2\right \} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\ \text{ with } \ a, b, \in \mathbb{Q} \right \}\end{align*}

To show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition, we have to show that the map $i:\ker (\Phi )\rightarrow \mathbb{Q}^2$ with $\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto \begin{pmatrix}a \\ b\end{pmatrix}$ is an isomorphism, i.e. a bijective homomorphism, right? First we have to show that $\ker\Phi$ is a group homomorphism.

Let $g=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} ,\ h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \in \ker (\Phi )$.

We have that:
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
2\cdot I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&2
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} Is this correct? Or have I calculated $g\cdot h$ wrong? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

For $n\in \mathbb{N}$ let $GL_n(\mathbb{Q})$ the group of all invertible matrices in $\mathbb{Q}^{n\times n}$. We have the subset \begin{equation*}G=\left \{\begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right \}\end{equation*} of $GL_3(\mathbb{Q})$ and the map $\Phi :G\rightarrow GL_2(\mathbb{Q})$ with $\Phi : \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto A$.

I want to show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition. The kernel of $\Phi$ is the following:
\begin{align*}\ker \Phi&=\{g\in G\mid \Phi (g)=I_2\} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \ \text{ with } \ A\in GL_2(\mathbb{Q}), \ a, b, \in \mathbb{Q} \mid A=I_2\right \} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\ \text{ with } \ a, b, \in \mathbb{Q} \right \}\end{align*}

To show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition, we have to show that the map $i:\ker (\Phi )\rightarrow \mathbb{Q}^2$ with $\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto \begin{pmatrix}a \\ b\end{pmatrix}$ is an isomorphism, i.e. a bijective homomorphism, right? First we have to show that $\ker\Phi$ is a group homomorphism.

Let $g=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} ,\ h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \in \ker (\Phi )$.

We have that:
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
2\cdot I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&2
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} Is this correct? Or have I calculated $g\cdot h$ wrong? (Wondering)
The "componentwise addition" refers only to the group operation in $\mathbb{Q}^2$. It does not apply to the kernel of $\Phi$, which is a subgroup of $GL_3(\mathbb{Q})$ and inherits the group operation of that group, namely matrix multiplication.
 
Opalg said:
The "componentwise addition" refers only to the group operation in $\mathbb{Q}^2$. It does not apply to the kernel of $\Phi$, which is a subgroup of $GL_3(\mathbb{Q})$ and inherits the group operation of that group, namely matrix multiplication.

Ah so we have the following, or not?
\begin{equation*}g\cdot h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\cdot \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\end{equation*}

And so we get
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} which means that the map is a group homomorphism, right? (Wondering)
 
mathmari said:
Ah so we have the following, or not?
\begin{equation*}g\cdot h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\cdot \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\end{equation*}

And so we get
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} which means that the map is a group homomorphism, right? (Wondering)
That is correct. But the matrix multiplication might look more transparent if you wrote matrices such as $$\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}$$ in the form $$\begin{pmatrix}
1&0&a \\ 0&1&b \\ 0&0&1
\end{pmatrix}$$.
 
Opalg said:
That is correct. But the matrix multiplication might look more transparent if you wrote matrices such as $$\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}$$ in the form $$\begin{pmatrix}
1&0&a \\ 0&1&b \\ 0&0&1
\end{pmatrix}$$.

Ok! Thanks a lot! (Smile)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top