MHB Is the Kernel of a Group Homomorphism isomorphic to $\mathbb{Q}^2$?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion centers on proving that the kernel of the homomorphism $\Phi: G \rightarrow GL_2(\mathbb{Q})$ is isomorphic to $\mathbb{Q}^2$ under componentwise addition. The kernel consists of matrices in $G$ where the upper left block is the identity matrix, allowing for the representation of elements as pairs $(a, b) \in \mathbb{Q}^2$. The participants confirm that the mapping $i: \ker(\Phi) \rightarrow \mathbb{Q}^2$ defined by $i(g) = \begin{pmatrix} a \\ b \end{pmatrix}$ is a homomorphism, demonstrating that it preserves the group operation. The conversation also emphasizes the importance of correctly interpreting the group operations involved, particularly distinguishing between matrix multiplication and componentwise addition. The conclusion affirms the correctness of the calculations and the isomorphism.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

For $n\in \mathbb{N}$ let $GL_n(\mathbb{Q})$ the group of all invertible matrices in $\mathbb{Q}^{n\times n}$. We have the subset \begin{equation*}G=\left \{\begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right \}\end{equation*} of $GL_3(\mathbb{Q})$ and the map $\Phi :G\rightarrow GL_2(\mathbb{Q})$ with $\Phi : \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto A$.

I want to show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition. The kernel of $\Phi$ is the following:
\begin{align*}\ker \Phi&=\{g\in G\mid \Phi (g)=I_2\} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \ \text{ with } \ A\in GL_2(\mathbb{Q}), \ a, b, \in \mathbb{Q} \mid A=I_2\right \} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\ \text{ with } \ a, b, \in \mathbb{Q} \right \}\end{align*}

To show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition, we have to show that the map $i:\ker (\Phi )\rightarrow \mathbb{Q}^2$ with $\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto \begin{pmatrix}a \\ b\end{pmatrix}$ is an isomorphism, i.e. a bijective homomorphism, right? First we have to show that $\ker\Phi$ is a group homomorphism.

Let $g=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} ,\ h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \in \ker (\Phi )$.

We have that:
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
2\cdot I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&2
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} Is this correct? Or have I calculated $g\cdot h$ wrong? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

For $n\in \mathbb{N}$ let $GL_n(\mathbb{Q})$ the group of all invertible matrices in $\mathbb{Q}^{n\times n}$. We have the subset \begin{equation*}G=\left \{\begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right \}\end{equation*} of $GL_3(\mathbb{Q})$ and the map $\Phi :G\rightarrow GL_2(\mathbb{Q})$ with $\Phi : \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto A$.

I want to show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition. The kernel of $\Phi$ is the following:
\begin{align*}\ker \Phi&=\{g\in G\mid \Phi (g)=I_2\} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
A
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \ \text{ with } \ A\in GL_2(\mathbb{Q}), \ a, b, \in \mathbb{Q} \mid A=I_2\right \} \\ & = \left \{ \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\ \text{ with } \ a, b, \in \mathbb{Q} \right \}\end{align*}

To show that the kernel of $\Phi$ is isomorphic to $\mathbb{Q}^2$ with the componentwise addition, we have to show that the map $i:\ker (\Phi )\rightarrow \mathbb{Q}^2$ with $\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\mapsto \begin{pmatrix}a \\ b\end{pmatrix}$ is an isomorphism, i.e. a bijective homomorphism, right? First we have to show that $\ker\Phi$ is a group homomorphism.

Let $g=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} ,\ h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix} \in \ker (\Phi )$.

We have that:
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
2\cdot I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&2
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} Is this correct? Or have I calculated $g\cdot h$ wrong? (Wondering)
The "componentwise addition" refers only to the group operation in $\mathbb{Q}^2$. It does not apply to the kernel of $\Phi$, which is a subgroup of $GL_3(\mathbb{Q})$ and inherits the group operation of that group, namely matrix multiplication.
 
Opalg said:
The "componentwise addition" refers only to the group operation in $\mathbb{Q}^2$. It does not apply to the kernel of $\Phi$, which is a subgroup of $GL_3(\mathbb{Q})$ and inherits the group operation of that group, namely matrix multiplication.

Ah so we have the following, or not?
\begin{equation*}g\cdot h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\cdot \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\end{equation*}

And so we get
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} which means that the map is a group homomorphism, right? (Wondering)
 
mathmari said:
Ah so we have the following, or not?
\begin{equation*}g\cdot h=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1\\
b_1\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\cdot \begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_2\\
b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}=\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\end{equation*}

And so we get
\begin{equation*}i\left (g\cdot h\right )=i\left (\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a_1+a_2\\
b_1+b_2\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}\right )=\begin{pmatrix}
a_1+a_2\\
b_1+b_2\\
\end{pmatrix}=\begin{pmatrix}
a_1\\
b_1\\
\end{pmatrix}+\begin{pmatrix}
a_2\\
b_2\\
\end{pmatrix}=i(g)+i(h)\end{equation*} which means that the map is a group homomorphism, right? (Wondering)
That is correct. But the matrix multiplication might look more transparent if you wrote matrices such as $$\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}$$ in the form $$\begin{pmatrix}
1&0&a \\ 0&1&b \\ 0&0&1
\end{pmatrix}$$.
 
Opalg said:
That is correct. But the matrix multiplication might look more transparent if you wrote matrices such as $$\begin{pmatrix}
\begin{matrix}
I_2
\end{matrix} & \begin{matrix}
a\\
b\\
\end{matrix} \\ \begin{matrix}
0 & 0 \\
\end{matrix}&1
\end{pmatrix}$$ in the form $$\begin{pmatrix}
1&0&a \\ 0&1&b \\ 0&0&1
\end{pmatrix}$$.

Ok! Thanks a lot! (Smile)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
8
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
31
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K