- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
We consider the $4\times 4$ matrix $$A=\begin{pmatrix}0 & 1 & 1 & 0\\ a & 0 & 0 & 1\\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c\end{pmatrix}$$
(a) For $a=1, \ b=2, \ c=3$ check if $A$ is diagonalizable and find a basis of $\mathbb{R}^4$ where the elements are eigenvectors of $A$.
(b) Show that if $a>0$ and $b^2\neq a\neq c^2$ then $A$ is diagonalizable.
(c) Show that if $a\leq 0$ then $A$ is not diagonalizable. For (a) I have done the following :
The eigenvalues of $A$ are $\lambda_1=2, \ \lambda_2=3, \ \lambda_3=-1, \ \lambda_4=1$, each has th algebraic multiplicity $1$.
The characteristic polynomial $(2-\lambda)\cdot (3-\lambda)\cdot (\lambda-1)\cdot (\lambda+1)$ can be written as a product of linear factors.
Now we calculate the eigenvectors.
- $\lambda_1=2$ :
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 2-2& 0 \\ 0 & 0 & 0 & 3-2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ -2& 1 & 1 & 0\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2 \\ 0 & 0 & 0& 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-2y+w=0& \\ -3y+z+2w=0& \\ w=0& \end{align*}
Therefore, $w=0$, $z=3y$, $x=2y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}2y\\ y\\ 3y\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity. - $\lambda_2=3$ :
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & 2-3& 0 \\ 0 & 0 & 0 & 3-3\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\-3& 1 & 1 & 0 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\0& -8 & 1 & 3 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-3y+w=0& \\ -8y+z+3w=0& \\ -z=0& \end{align*}
Therefore, $z=0$, $y=\frac{3}{8}w$, $x=\frac{1}{8}w$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}\frac{1}{8}w\\ \frac{3}{8}w\\ 0\\ w\end{pmatrix}: w\in \mathbb{R}\right \}=\left \{w\cdot \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix}: w\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_3=1$ :
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 2-1& 0 \\ 0 & 0 & 0 & 3-1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix} \longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}-x+y+z=0& \\ z+w=0& \\ -w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_4=-1$ :
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 2+1& 0 \\ 0 & 0 & 0 & 3+1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix} \longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x+y+z=0& \\ -z+w=0& \\ 3w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=-y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}-y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.That measn that $A$ is diagonalizable. Is everything correct so far? Could you give me a hint for questions (b) and (c) ? :unsure: Eine Basis von $\mathbb{R}^3$ ist \begin{equation*}\left \{\begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix},\ \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix},\ \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}\right \}\end{equation*}
We consider the $4\times 4$ matrix $$A=\begin{pmatrix}0 & 1 & 1 & 0\\ a & 0 & 0 & 1\\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c\end{pmatrix}$$
(a) For $a=1, \ b=2, \ c=3$ check if $A$ is diagonalizable and find a basis of $\mathbb{R}^4$ where the elements are eigenvectors of $A$.
(b) Show that if $a>0$ and $b^2\neq a\neq c^2$ then $A$ is diagonalizable.
(c) Show that if $a\leq 0$ then $A$ is not diagonalizable. For (a) I have done the following :
The eigenvalues of $A$ are $\lambda_1=2, \ \lambda_2=3, \ \lambda_3=-1, \ \lambda_4=1$, each has th algebraic multiplicity $1$.
The characteristic polynomial $(2-\lambda)\cdot (3-\lambda)\cdot (\lambda-1)\cdot (\lambda+1)$ can be written as a product of linear factors.
Now we calculate the eigenvectors.
- $\lambda_1=2$ :
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 2-2& 0 \\ 0 & 0 & 0 & 3-2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-2& 1 & 1 & 0 \\ 1 & -2 & 0 & 1\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ -2& 1 & 1 & 0\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2\\ 0 & 0 & 0& 0 \\ 0 & 0 & 0 & 1\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0& -3 & 1 & 2 \\ 0 & 0 & 0& 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-2y+w=0& \\ -3y+z+2w=0& \\ w=0& \end{align*}
Therefore, $w=0$, $z=3y$, $x=2y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}2y\\ y\\ 3y\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity. - $\lambda_2=3$ :
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & 2-3& 0 \\ 0 & 0 & 0 & 3-3\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-3& 1 & 1 & 0 \\ 1 & -3 & 0 & 1\\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\-3& 1 & 1 & 0 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\longrightarrow \begin{pmatrix} 1 & -3 & 0 & 1\\0& -8 & 1 & 3 \\ 0 & 0 & -1& 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x-3y+w=0& \\ -8y+z+3w=0& \\ -z=0& \end{align*}
Therefore, $z=0$, $y=\frac{3}{8}w$, $x=\frac{1}{8}w$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}\frac{1}{8}w\\ \frac{3}{8}w\\ 0\\ w\end{pmatrix}: w\in \mathbb{R}\right \}=\left \{w\cdot \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix}: w\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_3=1$ :
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 2-1& 0 \\ 0 & 0 & 0 & 3-1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}-1& 1 & 1 & 0 \\ 1 & -1 & 0 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix} \longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 2\end{pmatrix}\longrightarrow \begin{pmatrix} -1& 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0& -1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}-x+y+z=0& \\ z+w=0& \\ -w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.- $\lambda_4=-1$ :
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 2+1& 0 \\ 0 & 0 & 0 & 3+1\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\\ 0\end{pmatrix}\end{equation*}
Using Gauss-algorithm we get:
\begin{equation*}\begin{pmatrix}1& 1 & 1 & 0 \\ 1 & 1 & 0 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix} \longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 3& 0 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 4\end{pmatrix}\longrightarrow \begin{pmatrix} 1& 1 & 1 & 0 \\ 0 & 0 & -1 & 1\\ 0 & 0 & 0& 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get \begin{align*}x+y+z=0& \\ -z+w=0& \\ 3w=0& \end{align*}
Therefore, $w=0$, $z=0$, $x=-y$.
The eigenspace is then \begin{equation*}\left \{\begin{pmatrix}-y\\ y\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}=\left \{y\cdot \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}: y\in \mathbb{R}\right \}\end{equation*}
The geometric multiplicity, i.e. the dimension of the eigenspace, is $1$. So Algebraic multiplicity = Geometric Multiplicity.That measn that $A$ is diagonalizable. Is everything correct so far? Could you give me a hint for questions (b) and (c) ? :unsure: Eine Basis von $\mathbb{R}^3$ ist \begin{equation*}\left \{\begin{pmatrix}2\\ 1\\ 3\\ 0\end{pmatrix},\ \begin{pmatrix}\frac{1}{8}\\ \frac{3}{8}\\ 0\\ 1\end{pmatrix},\ \begin{pmatrix}1\\ 1\\ 0\\ 0\end{pmatrix}, \ \begin{pmatrix}-1\\ 1\\ 0\\ 0\end{pmatrix}\right \}\end{equation*}