- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We have that $q(x) \geq q_0>0, x \in [0,1], h>0$.
Suppose that we have this $(N+1) \times (N+1) matrix$:
$\begin{bmatrix}
\frac{1}{h^2}+\frac{1}{h}+\frac{q(x_0)}{2} & -\frac{1}{h^2} & 0 & \cdots & 0 \\
-\frac{1}{h^2} & \frac{2}{h^2}+q(x_1) & -\frac{1}{h^2} & \cdots &0 \\
0 & & & & \\
& & & & \\
0 & & 0 & -\frac{1}{h^2} &\frac{2}{h^2}+q(x_N)
\end{bmatrix}$
I want to show that it is invertible.
I thought to write it as $Q+T$, where $Q=diag (\frac{1}{2}q(x_0),q(x_1), \dots, q(x_N))$ and
$$T=\begin{bmatrix}
\frac{1}{h^2}+\frac{1}{h} & -\frac{1}{h^2} & 0 & & 0\\
-\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2}& &0 \\
0 & -\frac{1}{h^2} & \frac{2}{h^2} & & \\
& & & & -\frac{1}{h^2}\\
& & & -\frac{1}{h^2} & \frac{2}{h^2}
\end{bmatrix}$$But how can we show that $T$ is positive defined?
I have found that $x^T T x=\frac{x_0^2}{2}+\frac{1}{h^2} \sum_{i=0}^{N-1} (x_i-x_{i+1})^2+ \frac{x_N^2}{h^2}$. Is it right? (Thinking)
We have that $q(x) \geq q_0>0, x \in [0,1], h>0$.
Suppose that we have this $(N+1) \times (N+1) matrix$:
$\begin{bmatrix}
\frac{1}{h^2}+\frac{1}{h}+\frac{q(x_0)}{2} & -\frac{1}{h^2} & 0 & \cdots & 0 \\
-\frac{1}{h^2} & \frac{2}{h^2}+q(x_1) & -\frac{1}{h^2} & \cdots &0 \\
0 & & & & \\
& & & & \\
0 & & 0 & -\frac{1}{h^2} &\frac{2}{h^2}+q(x_N)
\end{bmatrix}$
I want to show that it is invertible.
I thought to write it as $Q+T$, where $Q=diag (\frac{1}{2}q(x_0),q(x_1), \dots, q(x_N))$ and
$$T=\begin{bmatrix}
\frac{1}{h^2}+\frac{1}{h} & -\frac{1}{h^2} & 0 & & 0\\
-\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2}& &0 \\
0 & -\frac{1}{h^2} & \frac{2}{h^2} & & \\
& & & & -\frac{1}{h^2}\\
& & & -\frac{1}{h^2} & \frac{2}{h^2}
\end{bmatrix}$$But how can we show that $T$ is positive defined?
I have found that $x^T T x=\frac{x_0^2}{2}+\frac{1}{h^2} \sum_{i=0}^{N-1} (x_i-x_{i+1})^2+ \frac{x_N^2}{h^2}$. Is it right? (Thinking)