- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
A small sphere with radius $1$ and density $p$ moves downwards with constant velocity $v$, under the influence of the gravity $g$, at a liquid of density $p_l$ and viscosity coefficient $\mu$. (The units of $\mu$ are mass per unit of length per unit of time). From results of experiments, we get the relation:
$v=\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$
I want to check if the physical law $v=\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$ is unit-free.
I have tried the following:
The physical law is: $f(v,r,p,g,p_l, \mu)=v-\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$.
The quantities are:
Length: $L$
Time: $T$
Mass: $M$
So:
$[v]=LT^{-1}$
$[r]=L$
$[p]=ML^{-3}$
$[g]=M$
$[p_l]=ML^{-3}$
$[\mu]=LT^{-1}$
Let $\lambda_1, \lambda_2, \lambda_3>0$ and we consider the transformation of system of units:$$\overline{L}=\lambda_1 L, \ \overline{T}=\lambda_2 T, \ \overline{M}=\lambda_3 M $$
Then:
$[v]=\lambda_1L(\lambda_2T)^{-1}$
$[r]=\lambda_1L$
$[p]=\lambda_3M(\lambda_1L)^{-3}$
$[g]=\lambda_3M$
$[p_l]=\lambda_3M(\lambda_1L)^{-3}$
$[\mu]=\lambda_1L(\lambda_2T)^{-1}$
$$f(\overline{v}, \overline{r}, \overline{p}, \overline{g}, \overline{p_l}, \overline{\mu})=\overline{u}-\frac{2}{9} \overline{r}^2 \overline{p} \overline{g} \overline{\mu}^{-1} \left(1-\frac{p_l}{\overline{p}} \right)=\lambda_1 (\lambda_2)^{-1}u-\frac{2}{9} \lambda_1^2 r^2 \lambda_3 \lambda_1^{-3} \lambda_3 \lambda_1^{-1} \lambda_2 p g \mu^{-1} \left( 1-\frac{\lambda_3 \lambda_1^{-3} p_l}{\lambda_3 \lambda_1^{-3}p}\right)=\lambda_1 (\lambda_2)^{-1}u-\frac{2}{9} \lambda_1^{-1} \lambda_3^3 \lambda_2 r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p}\right)$$
Is it right? If so, do we deduce that the physical law isn't unit-free?
Or have I done something wrong? (Thinking)
A small sphere with radius $1$ and density $p$ moves downwards with constant velocity $v$, under the influence of the gravity $g$, at a liquid of density $p_l$ and viscosity coefficient $\mu$. (The units of $\mu$ are mass per unit of length per unit of time). From results of experiments, we get the relation:
$v=\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$
I want to check if the physical law $v=\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$ is unit-free.
I have tried the following:
The physical law is: $f(v,r,p,g,p_l, \mu)=v-\frac{2}{9} r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p} \right)$.
The quantities are:
Length: $L$
Time: $T$
Mass: $M$
So:
$[v]=LT^{-1}$
$[r]=L$
$[p]=ML^{-3}$
$[g]=M$
$[p_l]=ML^{-3}$
$[\mu]=LT^{-1}$
Let $\lambda_1, \lambda_2, \lambda_3>0$ and we consider the transformation of system of units:$$\overline{L}=\lambda_1 L, \ \overline{T}=\lambda_2 T, \ \overline{M}=\lambda_3 M $$
Then:
$[v]=\lambda_1L(\lambda_2T)^{-1}$
$[r]=\lambda_1L$
$[p]=\lambda_3M(\lambda_1L)^{-3}$
$[g]=\lambda_3M$
$[p_l]=\lambda_3M(\lambda_1L)^{-3}$
$[\mu]=\lambda_1L(\lambda_2T)^{-1}$
$$f(\overline{v}, \overline{r}, \overline{p}, \overline{g}, \overline{p_l}, \overline{\mu})=\overline{u}-\frac{2}{9} \overline{r}^2 \overline{p} \overline{g} \overline{\mu}^{-1} \left(1-\frac{p_l}{\overline{p}} \right)=\lambda_1 (\lambda_2)^{-1}u-\frac{2}{9} \lambda_1^2 r^2 \lambda_3 \lambda_1^{-3} \lambda_3 \lambda_1^{-1} \lambda_2 p g \mu^{-1} \left( 1-\frac{\lambda_3 \lambda_1^{-3} p_l}{\lambda_3 \lambda_1^{-3}p}\right)=\lambda_1 (\lambda_2)^{-1}u-\frac{2}{9} \lambda_1^{-1} \lambda_3^3 \lambda_2 r^2 p g \mu^{-1} \left( 1-\frac{p_l}{p}\right)$$
Is it right? If so, do we deduce that the physical law isn't unit-free?
Or have I done something wrong? (Thinking)