- #1
lokofer
- 106
- 0
If we have (Poisson sum formula) in the form:
[tex] \sum_{n=-\infty}^{\infty}f(n)= \int_{-\infty}^{\infty}dx f(x) \omega (x) [/tex]
with [tex] \omega (x) = \sum_{n=-\infty}^{\infty}e^{2i \pi nx} [/tex]
Then my question is if we would have that:
[tex] \sum_{n=-\infty}^{\infty} \frac{ f(n)}{ \omega (n)} = \int_{-\infty}^{\infty} dx f(x) [/tex] ??
[tex] \sum_{n=-\infty}^{\infty}f(n)= \int_{-\infty}^{\infty}dx f(x) \omega (x) [/tex]
with [tex] \omega (x) = \sum_{n=-\infty}^{\infty}e^{2i \pi nx} [/tex]
Then my question is if we would have that:
[tex] \sum_{n=-\infty}^{\infty} \frac{ f(n)}{ \omega (n)} = \int_{-\infty}^{\infty} dx f(x) [/tex] ??