- #1
NoName3
- 25
- 0
For any $a \in \mathbb{R}$, let $a^3$ denote $a \cdot a \cdot a$. Let $x, y \in \mathbb{R}$.
1. Prove that if $x < y$ then $x^3 < y^3$.
2. Prove that there are $c, d \in \mathbb{R}$ such that $c^3 < x < d^3$.
1. Prove that if $x < y$ then $x^3 < y^3$.
2. Prove that there are $c, d \in \mathbb{R}$ such that $c^3 < x < d^3$.