- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
For any continuous real-valued function $f$ defined on the interval $[0,1]$, let
\begin{gather*}
\mu(f) = \int_0^1 f(x)\,dx, \,
\mathrm{Var}(f) = \int_0^1 (f(x) - \mu(f))^2\,dx, \\
M(f) = \max_{0 \leq x \leq 1} \left| f(x) \right|.
\end{gather*}
Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1]$, then
\[
\mathrm{Var}(fg) \leq 2 \mathrm{Var}(f) M(g)^2 + 2 \mathrm{Var}(g) M(f)^2.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
For any continuous real-valued function $f$ defined on the interval $[0,1]$, let
\begin{gather*}
\mu(f) = \int_0^1 f(x)\,dx, \,
\mathrm{Var}(f) = \int_0^1 (f(x) - \mu(f))^2\,dx, \\
M(f) = \max_{0 \leq x \leq 1} \left| f(x) \right|.
\end{gather*}
Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1]$, then
\[
\mathrm{Var}(fg) \leq 2 \mathrm{Var}(f) M(g)^2 + 2 \mathrm{Var}(g) M(f)^2.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!