- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Let ##F## be a field. If ##A \in M_{n\times k}(F)## and ##B\in M_{k\times n}(F)##, show that $$\operatorname{rank}(A) + \operatorname{rank}(B) - k \le \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$$