- #1
aderowbotham
- 5
- 0
I understand that Spacetime is expanding, as demonstrated by the increase in red-shift with distance.
And I also understand that light travels *through* spacetime which itself is expanding.
It seems rational to me that one may compare the rate of spacetime expansion to the speed of light, in much the same way that one could compare the speed at which I might run *up* an escalator which itself is moving downwards. Or the speed at which an ant might walk across the surface of an inflating balloon.
So given that we can detect light / radiation from distances approaching 13 billion years, it seems logical that the average speed of expansion since the big bang must greatly *exceed* the speed of light. Otherwise that light would have reached us a long time ago.
Is that valid?
And I also understand that light travels *through* spacetime which itself is expanding.
It seems rational to me that one may compare the rate of spacetime expansion to the speed of light, in much the same way that one could compare the speed at which I might run *up* an escalator which itself is moving downwards. Or the speed at which an ant might walk across the surface of an inflating balloon.
So given that we can detect light / radiation from distances approaching 13 billion years, it seems logical that the average speed of expansion since the big bang must greatly *exceed* the speed of light. Otherwise that light would have reached us a long time ago.
Is that valid?