- #1
tmt1
- 234
- 0
I have this:
$$ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$$
And I need to determine if it is convergent or divergent.
I try the limit comparison test against:
$$ \frac{1}{3^{1 + 3n}}$$.
So I need to determine
$$ \lim_{{n}\to{\infty}} \frac{3^{1 + 3n} \cdot n^n}{3^{1 + 3n}}$$
Or
$$ \lim_{{n}\to{\infty}} n^n$$
which is clearly $\infty$.
So that means the initial expression should behave the same as
$$\sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n}}$$.
Clearly $3^{1 + 3n } > 3^n$, therefore $\frac{1}{3^{1 + 3n }} < \frac{1}{3^n}$
Since $$ \sum_{n = 1}^{\infty} \frac{1}{3^{n}}$$ is convergent, then $$ \sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n }}$$
is convergent.
Thus, $ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$ is convergent.
$$ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$$
And I need to determine if it is convergent or divergent.
I try the limit comparison test against:
$$ \frac{1}{3^{1 + 3n}}$$.
So I need to determine
$$ \lim_{{n}\to{\infty}} \frac{3^{1 + 3n} \cdot n^n}{3^{1 + 3n}}$$
Or
$$ \lim_{{n}\to{\infty}} n^n$$
which is clearly $\infty$.
So that means the initial expression should behave the same as
$$\sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n}}$$.
Clearly $3^{1 + 3n } > 3^n$, therefore $\frac{1}{3^{1 + 3n }} < \frac{1}{3^n}$
Since $$ \sum_{n = 1}^{\infty} \frac{1}{3^{n}}$$ is convergent, then $$ \sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n }}$$
is convergent.
Thus, $ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$ is convergent.