- #1
Gregg
- 459
- 0
Homework Statement
Hamiltonian for an electron positron system in a uniform magnetic field B (in the z direction)## \hat{H} = AS^{(-)} \cdot S^{(+)} +\frac{eB}{mc} (S_z^{(-)} +S_z^{(+)} )##
##A \in \Re ##
We have a spin ket given by
## |\psi \rangle = | \uparrow \rangle^{(+)} | \uparrow \rangle^{(-)} ##
For A = 0 is ##| \psi \rangle ## an eigenket?
For B = 0 is it an eigenket?
Homework Equations
The Attempt at a Solution
I believe that the (+) denotes the positron and the (-), an electron. This is a two spin-1/2 particle system.
In lectures we have been given eigenvalues of various spin operators
The second term in the Hamiltonian is
## \frac{eB}{mc}(S^{(+)}_z + S^{(-)}_z ) = \frac{eB}{mc} (S^{(+)+(-)})_z ## which has eigenvalue ## m\hbar = (m_1+m_2)\hbar ##
The first term in the Hamiltonian is something I find confusing
## A S^{(-)} \cdot S^{(+)} ##
My attempt is
## S^{(+)+(-)} = S^{(+)} + S^{(-)} ##
## S^{(-)} \cdot S^{(+)} = ( S^{(+)+(-)}-S^{(+)} )( S^{(+)+(-)}-S^{(-)}) ##
##= S^{(+)+(-)} \cdot S^{(+)+(-)} + S^{(+)} \cdot S^{(-)} - S^{(+)} \cdot S^{(+)+(-)} - S^{(+)+(-)} \cdot S^{(-)} ##
The first term gives ##s(s+1) \hbar^2## as an eigenvalue. I can't work out the rest and I do not know how to apply it to the spin ket
## |\psi \rangle = | \uparrow \rangle^{(-)} | \uparrow \rangle ^{(+)} ##
I don't get the notation impled by this ket. Does it just mean that it is the state with both spin +1/2. meaning that we have s=1/2+1/2=1?
Last edited: