- #1
asif zaidi
- 56
- 0
I am not sure of the way in which I am solving. I am showing my approach and my questions are at end.
Plz advise why I maybe wrong?
Thanks
Asif
Problem Statement:
Use the formula for sum of a geometric progression to compute
exp(i[tex]\theta[/tex]) + exp(i2[tex]\theta[/tex]) +...+exp(in[tex]\theta[/tex])
and find formulas for trigonometric sums for
cos([tex]\theta[/tex]) + cos(2[tex]\theta[/tex])+...+cos(n[tex]\theta[/tex])
and
sin([tex]\theta[/tex]) + sin(2[tex]\theta[/tex])+...+sin(n[tex]\theta[/tex])
Solution
A geometric progression sum: 1/1-r (assuming sequence is r, r^2,...r^n
Therefore for this problem, the sum will be
1/(1-exp(i[tex]\theta[/tex])) = 1/(1-cos [tex]\theta[/tex]) - isin([tex]\theta[/tex])
Taking conjugate of denominator above equation reduces to
1/2 + i sin([tex]\theta[/tex])/(2(1-cos([tex]\theta[/tex]))
Therefore
cos([tex]\theta[/tex]) + cos(2[tex]\theta[/tex])+...+cos(n[tex]\theta[/tex]) = 1/2
and
sin([tex]\theta[/tex]) + sin(2[tex]\theta[/tex])+...+sin(n[tex]\theta[/tex]) = sin([tex]\theta[/tex])/(2(1-cos([tex]\theta[/tex]))
Problem:
1- Have I approached this problem in the right way
2- Does sum of cos = 1/2. Is this a property of cos? If so what is it called?
Plz advise why I maybe wrong?
Thanks
Asif
Problem Statement:
Use the formula for sum of a geometric progression to compute
exp(i[tex]\theta[/tex]) + exp(i2[tex]\theta[/tex]) +...+exp(in[tex]\theta[/tex])
and find formulas for trigonometric sums for
cos([tex]\theta[/tex]) + cos(2[tex]\theta[/tex])+...+cos(n[tex]\theta[/tex])
and
sin([tex]\theta[/tex]) + sin(2[tex]\theta[/tex])+...+sin(n[tex]\theta[/tex])
Solution
A geometric progression sum: 1/1-r (assuming sequence is r, r^2,...r^n
Therefore for this problem, the sum will be
1/(1-exp(i[tex]\theta[/tex])) = 1/(1-cos [tex]\theta[/tex]) - isin([tex]\theta[/tex])
Taking conjugate of denominator above equation reduces to
1/2 + i sin([tex]\theta[/tex])/(2(1-cos([tex]\theta[/tex]))
Therefore
cos([tex]\theta[/tex]) + cos(2[tex]\theta[/tex])+...+cos(n[tex]\theta[/tex]) = 1/2
and
sin([tex]\theta[/tex]) + sin(2[tex]\theta[/tex])+...+sin(n[tex]\theta[/tex]) = sin([tex]\theta[/tex])/(2(1-cos([tex]\theta[/tex]))
Problem:
1- Have I approached this problem in the right way
2- Does sum of cos = 1/2. Is this a property of cos? If so what is it called?