- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Suppose we have the system $$\exists y (G(y)=f \land G_1(y)\neq g_1 \land G_2(y)\neq g_2).$$
Is this equivalent to $$\not\exists y \ \left (G(y)=f \land G_1(y)= g_1 \land G_2(y)= g_2) \ \land \ \exists \ x(G(x)=f\right )$$ ?
Or to $$\not\exists y_1, \not\exists y_2 \ \left ((G(y_1)=f \land G_1(y_1)= g_1 ) \land (G(y_2)=f \land G_2(y)= g_2)\right ) \ \land \ \exists x \ \left (G(x)=f\right )$$ ? (Wondering)
Suppose we have the system $$\exists y (G(y)=f \land G_1(y)\neq g_1 \land G_2(y)\neq g_2).$$
Is this equivalent to $$\not\exists y \ \left (G(y)=f \land G_1(y)= g_1 \land G_2(y)= g_2) \ \land \ \exists \ x(G(x)=f\right )$$ ?
Or to $$\not\exists y_1, \not\exists y_2 \ \left ((G(y_1)=f \land G_1(y_1)= g_1 ) \land (G(y_2)=f \land G_2(y)= g_2)\right ) \ \land \ \exists x \ \left (G(x)=f\right )$$ ? (Wondering)