- #1
merrypark3
- 30
- 0
Homework Statement
Show that
If [itex]\phi[/itex](x,y,z) is a solution of Laplace's equation, show that
[itex]\frac{1}{r}\phi (\frac{x}{r^2} ,\frac{y}{r^2} , \frac{z}{r^2} )[/itex] is also a solution
Homework Equations
The Attempt at a Solution
let [itex]\psi= \frac{1}{r} \phi (\frac{x}{r^2} ,\frac{y}{r^2} , \frac{z}{r^2} )[/itex] is a solution.
Then in the spherical coordinate,
[itex]\psi=\frac{1}{r} \phi ( \frac{1}{r} , \theta , \varphi )[/itex]
So input [itex]\psi [/itex] to the spherical laplace equation.
[itex]\frac{1}{r^2}\frac{∂}{∂r} (r^2 \frac{∂\psi}{∂r}) = \frac {2}{r^4} \frac{∂\phi}{∂r} - \frac{1}{r^3} \frac{∂^2 \phi}{∂r^2} [/itex]
The derivation with other angles, same to the original one, except 1/r times factor.
But the r part for the original one is
[itex]\frac{1}{r^2}\frac{∂}{∂r} (r^2 \frac{∂\phi}{∂r}) = \frac {2}{r} \frac{∂\phi}{∂r} + \frac{∂^2 \phi}{∂r^2} [/itex]
What's wrong with me?