- #1
sarrah1
- 66
- 0
Can I always say without reservation that for any two integral operators $K$ and $L$ defined as follows say
$(Ky)(x)=\int_{a}^{b} \,k(x,s)y(s)ds$
that
$||L||+||K-L||\ge||K||$
thanks
Sarrah
$(Ky)(x)=\int_{a}^{b} \,k(x,s)y(s)ds$
that
$||L||+||K-L||\ge||K||$
thanks
Sarrah