- #1
Dustinsfl
- 2,281
- 5
L'Hopitals rule here makes it way more complicated. Is there a better method?
$\alpha = 2\arcsin\left(\sqrt{\frac{s}{2a}}\right)$
$\beta = 2\arcsin\left(\sqrt{\frac{s-c}{2a}}\right)$
$$
\lim_{a\to\infty}\left[a^{3/2}(\alpha - \beta -(\sin(\alpha) - \sin(\beta))\right]
$$
$\alpha = 2\arcsin\left(\sqrt{\frac{s}{2a}}\right)$
$\beta = 2\arcsin\left(\sqrt{\frac{s-c}{2a}}\right)$
$$
\lim_{a\to\infty}\left[a^{3/2}(\alpha - \beta -(\sin(\alpha) - \sin(\beta))\right]
$$