- #1
ognik
- 643
- 2
Please excuse my copying this question in, minimising my input :-)
View attachment 4920
Part (b): Let $ a.b \times c =v $
Then $ a'.b' \times c' = \left( \frac{b \times c}{v}\right) . \left( \frac{c \times a}{v} \times \frac{a \times b}{v}\right) $
$ = v^{-1} \left(b \times c\right). \left[ \left(c \times a\right) \times \left(a \times b\right) \right] $
From a previous exercise, $ \left(a \times b\right) \times \left(c \times d\right) = \left(a.b \times d\right)c - \left(a.b \times c\right)d $ ...
I get $ v^{-1} \left(b \times c\right). \left[ \left(c.a \times b\right)a - \left(c.a \times a\right)b \right] $
the $a \times a$ term = 0, but I am not sure of the laws around something like $ \left(c.a \times b\right)a $
I don't think I can do $ \left(c.a.a \times b.a\right) $ ? So I'm a bit stuck here, maybe there's a better way to approach this..
View attachment 4920
Part (b): Let $ a.b \times c =v $
Then $ a'.b' \times c' = \left( \frac{b \times c}{v}\right) . \left( \frac{c \times a}{v} \times \frac{a \times b}{v}\right) $
$ = v^{-1} \left(b \times c\right). \left[ \left(c \times a\right) \times \left(a \times b\right) \right] $
From a previous exercise, $ \left(a \times b\right) \times \left(c \times d\right) = \left(a.b \times d\right)c - \left(a.b \times c\right)d $ ...
I get $ v^{-1} \left(b \times c\right). \left[ \left(c.a \times b\right)a - \left(c.a \times a\right)b \right] $
the $a \times a$ term = 0, but I am not sure of the laws around something like $ \left(c.a \times b\right)a $
I don't think I can do $ \left(c.a.a \times b.a\right) $ ? So I'm a bit stuck here, maybe there's a better way to approach this..