Is There a Constant \( c \) for the Moduli Sum of Complex Numbers?

In summary, there exists a constant c, independent of n, such that if {Z_j} are complex numbers and the sum of their moduli from 1 to n is greater than or equal to 1, then there exists a subcollection {Z_j_k} of {Z_j} whose sum of moduli is greater than or equal to c. This can be proven by considering different cases and using the triangle inequality. The original statement should have specified the sum of the moduli as the premise for the theorem.
  • #1
cheeez
20
0
show there is a some constant c, independent of n, s.t. if {Z_j} are complex numbers and sum of |Z_j| from 1 to n >= 1, then there's a subcollection {Z_j_k} of {Z_j} s.t. sum of |Z_j_k| >= c.

Any hint on how to start this?
 
Physics news on Phys.org
  • #2
Are there any restrictions on c? As I interpret the statement, c = 1/2 will always work.
 
  • #3
how did you get 1/2. No restrictions on C. I don't get the question fully this C is a number that works for any sequence of {Z_j} right? otherwise you can pick any subcollection calculate the modulus of the sum and pick some C less than that.
 
  • #4
You can obtain 1/2 by considering n=2. For any n, you can gather the n terms together into 2 terms.
 
  • #5
ok it's 1/2 because you are looking at the subcollection of only 1 term right. so at least 1 of 2 must exceed 1/2.

i don't see how you can divide them into 2 numbers because you would need to have |z_1+..+z_i| + |z_i+1+...+z_n| >= 1 but that's not necessarily true since triangle inequality works the other way.
 
  • #6
There's no need to involve the triangle inequality. The theorem you stated in the OP is about the sum of moduli, not moduli of the sums.
 
  • #7
i don't get it how are you dividing z_1,...,z_n into 2 terms so |z_1+..+z_i| + |z_i+1+...+z_n| >= 1
 
  • #8
cheeez said:
i don't get it how are you dividing z_1,...,z_n into 2 terms so |z_1+..+z_i| + |z_i+1+...+z_n| >= 1

Try

[tex] \sum_k |z_k| = \left( |z_1|+\cdots+|z_i| \right) + \left( |z_{i+1}|+\cdots+|z_n| \right). [/tex]
 
  • #9
oh man I screwed up the original posting, I meant you need it so that |sum of z_j| >= C for some subcollection z_j of the original z_n
 
  • #10
Then use the triangle inequality to show that

[tex] |z_1+\cdots+z_i| + |z_{i+1}+\cdots+z_n| \geq 1.
[/tex]
 
  • #11
you're saying this is always true for any i? if you have 3 numbers each of which has length 1/3 and if you divide it into z1+z2 and z3 where z1 and z2 point in the opposite directions this wouldn't be true. I don't think its as simple as the triangle inequality
 
  • #12
No it's not true for any i. You have to show that there is some partition that satisfies the premise of the theorem.
 
  • #13
yea that's what I'm trying to do, any ideas?
 
  • #14
Actually any partition will work. You have 2 positive numbers whose sum is [tex]\geq 1[/tex]. There's only a couple of cases to consider. I can't really be anymore specific without completely giving the proof.
 
  • #15
but obviously the {z1,z2} , {z3} partition does not work for n=3 take z1 , z2 to be a+bi, -a-bi, and z3 to be some other vector perpendicular to them and each length 1/3.
 
  • #16
Those don't satisfy [tex]|z_1+z_2 +z_3| \geq 1[/tex].
 
  • #17
I think I see the confusion, my correction only applies to the 2nd part. the original problem should be

show there is a some constant c, independent of n, s.t. if {Z_j} are complex numbers and sum of |Z_j| from 1 to n >= 1, then there's a subcollection {Z_j_k} of {Z_j} s.t. |sum of Z_j_k| >= c.

so here |z1| + |z2| + |z3| = 1/3 + 1/3 + 1/3 = 1
 

FAQ: Is There a Constant \( c \) for the Moduli Sum of Complex Numbers?

What are complex numbers?

Complex numbers are numbers that include both a real part and an imaginary part. They are written in the form a + bi, where a is the real part and bi is the imaginary part with i being the imaginary unit (i=√-1).

What is the modulus of a complex number?

The modulus of a complex number is the distance of the number from the origin on the complex plane. It can be calculated using the formula |z| = √(a^2 + b^2), where a and b are the real and imaginary parts respectively.

What is the sum of two complex numbers?

The sum of two complex numbers is calculated by adding their real parts and their imaginary parts separately. For example, (a+bi) + (c+di) = (a+c) + (b+d)i.

How do you find the modulus of a sum of two complex numbers?

To find the modulus of a sum of two complex numbers, you can use the formula |z1 + z2| = √((a1+a2)^2 + (b1+b2)^2), where z1 and z2 are the two complex numbers with real parts a1 and a2 and imaginary parts b1 and b2 respectively.

What is the significance of complex numbers moduli sum in science?

Complex numbers moduli sum is often used in science to represent physical quantities that have both magnitude and direction, such as force and velocity. It is also used in fields such as engineering, physics, and mathematics to solve complex equations and analyze systems with multiple variables.

Back
Top