- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Is the following functional over $C^1([a,b])$ linear?
$$J(y)= \int_a^b (y')^2 dx+ G(y(b))$$
That's what I have thought:if $J$ would be linear it would have to hold:
$\forall y \in C^1([a,b]), \forall \lambda \in \mathbb{R}$
$J(\lambda y)=\lambda J(y)$ or equivalently
$\int_a^b (\lambda y')^2 dx+ G(\lambda y(b))=\lambda \left( \int_a^b (y')^2 dx+ G(y(b))\right)\\ \Rightarrow \lambda^2 \int_a^b (y')^2 dx+ G(\lambda y(b))= \lambda \int_a^b (y')^2 dx+ \lambda G(y(b)) $
For $\lambda=2, y=x$ the equality becomes:$4 \int_a^b 1 dx+ G(2b)=2 \int_a^b 1 dx+ 2 G(b) \Rightarrow 2(b-a)=2G(b)-G(2b) $
Can we take a specific function $G$ ? Or how else could we find a contradiction? (Thinking)
Is the following functional over $C^1([a,b])$ linear?
$$J(y)= \int_a^b (y')^2 dx+ G(y(b))$$
That's what I have thought:if $J$ would be linear it would have to hold:
$\forall y \in C^1([a,b]), \forall \lambda \in \mathbb{R}$
$J(\lambda y)=\lambda J(y)$ or equivalently
$\int_a^b (\lambda y')^2 dx+ G(\lambda y(b))=\lambda \left( \int_a^b (y')^2 dx+ G(y(b))\right)\\ \Rightarrow \lambda^2 \int_a^b (y')^2 dx+ G(\lambda y(b))= \lambda \int_a^b (y')^2 dx+ \lambda G(y(b)) $
For $\lambda=2, y=x$ the equality becomes:$4 \int_a^b 1 dx+ G(2b)=2 \int_a^b 1 dx+ 2 G(b) \Rightarrow 2(b-a)=2G(b)-G(2b) $
Can we take a specific function $G$ ? Or how else could we find a contradiction? (Thinking)