- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We are given the vectors $\vec{a}=\begin{pmatrix}4\\ 1 \\ 0\end{pmatrix}, \vec{b}=\begin{pmatrix}2\\ 0 \\ 1\end{pmatrix}, \vec{c}=\begin{pmatrix}0\\ -2 \\ 4\end{pmatrix}$.
I have shown by calculating the deteminant $|D|=0$ that these three vectors are linearly dependent.
I want to give a basis of the subspace of $\mathbb{R}^3$ that is spanned by these three vectors.
To find the basis of the subspace $\text{ span }\{\vec{a}, \vec{b}, \vec{c}\}$ we have to find a minimal subset $V$ of $\{\vec{a}, \vec{b}, \vec{c}\}$ with $\text{ span }V=\text{ span } \{\vec{a}, \vec{b}, \vec{c}\}$.
We have to use the Gauss algorithm to find the linearly independent subset, right?
$\begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
1 & 0 & -2\\
0 & 1 & 4
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row} \leftrightarrow 3.\text{row}\\
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
1 & 0 & -2
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
4\cdot 3.\text{row}-1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & -2 & -8
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}
\begin{matrix}
\\
\\
-\frac{1}{2}\cdot 3.\text{row}- 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$
So, we get $4\lambda_1+\lambda_2=0, \lambda_2+4\lambda_3=0$, and so $\lambda_1=2\lambda_3, \lambda_2=-4\lambda_3$.
Therefore, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2,-4,1), \lambda_3\in \mathbb{R}$.
For $\lambda_3=1$ we get the coefficients $(2,-4,1)$. That means that $2\vec{a}-4\vec{b}+\vec{c}=0 \Rightarrow \vec{c}=-2\vec{a}+4\vec{b}$.
Do we have to check if the vectors $\vec{a}, \vec{b}$ are linearly independent? Or can we just conclude from here that the basis that we are looking for is $\{\vec{a}, \vec{b}\}$ ? (Wondering)
We are given the vectors $\vec{a}=\begin{pmatrix}4\\ 1 \\ 0\end{pmatrix}, \vec{b}=\begin{pmatrix}2\\ 0 \\ 1\end{pmatrix}, \vec{c}=\begin{pmatrix}0\\ -2 \\ 4\end{pmatrix}$.
I have shown by calculating the deteminant $|D|=0$ that these three vectors are linearly dependent.
I want to give a basis of the subspace of $\mathbb{R}^3$ that is spanned by these three vectors.
To find the basis of the subspace $\text{ span }\{\vec{a}, \vec{b}, \vec{c}\}$ we have to find a minimal subset $V$ of $\{\vec{a}, \vec{b}, \vec{c}\}$ with $\text{ span }V=\text{ span } \{\vec{a}, \vec{b}, \vec{c}\}$.
We have to use the Gauss algorithm to find the linearly independent subset, right?
$\begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
1 & 0 & -2\\
0 & 1 & 4
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row} \leftrightarrow 3.\text{row}\\
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
1 & 0 & -2
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
4\cdot 3.\text{row}-1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & -2 & -8
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}
\begin{matrix}
\\
\\
-\frac{1}{2}\cdot 3.\text{row}- 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$
So, we get $4\lambda_1+\lambda_2=0, \lambda_2+4\lambda_3=0$, and so $\lambda_1=2\lambda_3, \lambda_2=-4\lambda_3$.
Therefore, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2,-4,1), \lambda_3\in \mathbb{R}$.
For $\lambda_3=1$ we get the coefficients $(2,-4,1)$. That means that $2\vec{a}-4\vec{b}+\vec{c}=0 \Rightarrow \vec{c}=-2\vec{a}+4\vec{b}$.
Do we have to check if the vectors $\vec{a}, \vec{b}$ are linearly independent? Or can we just conclude from here that the basis that we are looking for is $\{\vec{a}, \vec{b}\}$ ? (Wondering)
Last edited by a moderator: