Is there a way to calculate this transformation?

In summary, the document discusses methods for calculating a specific transformation, exploring various mathematical approaches and formulas that can be applied. It emphasizes the importance of understanding the underlying principles and the context in which the transformation occurs to ensure accurate results.
  • #1
wirefree
108
21
Namaste & G'day!

Imagine a helicopter view of a Polo ground. It's length & breadth are known.

Screenshot_20240316-165049.png



Now you are seated where the blue dot is. Your view is such:

IMG_2024-03-16-16-48-17-200~2.jpg


How do mathematicians calculate the distance travelled by a ball from the second perspective?

From the top view, this would be trivial.

But now your view is transformed.
 
Mathematics news on Phys.org
  • #2
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
 
  • Like
Likes wirefree and FactChecker
  • #3
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.
 
  • Like
Likes wirefree
  • #4
Frabjous said:
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
Here's a view:

Untitled1.png



You see how the perspective view squashes the 160yd width of the polo field.
 
  • #5
FactChecker said:
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.

I am interested in following your suggestion. Please annotate as briefly as convenient, Sir.
Untitled2.png
 

Similar threads

Back
Top