- #1
frb
- 16
- 0
Let V be the variety of the ideal (f)
a singular point is a point where all the partial derivatives of the f are zero.
I know you can find singular points by writing down all these partial derivatives and also that the points are zeros of f (such as all points on the variety) and solve that system of equations. These are generally very difficult systems to solve so I wondered if there was a more elegant method to find these singular points.
a singular point is a point where all the partial derivatives of the f are zero.
I know you can find singular points by writing down all these partial derivatives and also that the points are zeros of f (such as all points on the variety) and solve that system of equations. These are generally very difficult systems to solve so I wondered if there was a more elegant method to find these singular points.
Last edited: