- #1
Orion1
- 973
- 3
I attempted to use the Maple 13 'tensor' package to solve the [itex]G_{rr}[/tex] component of the Einstein_tensor for a General Relativity generic metric for which the solution is already known.
General Relativity generic metric: (reference 2 - eq. 1)
[tex]c^{2} d\tau^{2} = e^{\nu(r)} dt^{2} - e^{\lambda(r)} dr^{2} - r^2 d\theta^{2} - r^2 \sin^2 \theta d\phi^2[/tex]
I used the exact same source code listed in the Maple 13 software help index and reference 1, except the definitions of the [tex]g_{11}[/tex] and [tex]g_{22}[/tex] matrix elements.
Code:
> with(tensor); coord := [t, r, th, ph];
g_compts := array(symmetric, sparse, 1 .. 4, 1 .. 4);
g_compts[1, 1] := exp(nu(r));
g_compts[2, 2] := -exp(lambda(r));
g_compts[3, 3] := -r^2;
g_compts[4, 4] := -r^2*sin(th)^2;
g := create([-1, -1], eval(g_compts));
ginv := invert(g, 'detg');
D1g := d1metric(g, coord);
D2g := d2metric(D1g, coord);
Cf1 := Christoffel1(D1g);
RMN := Riemann(ginv, D2g, Cf1);
RICCI := Ricci(ginv, RMN);
RS := Ricciscalar(ginv, RICCI);
Estn := Einstein(g, RICCI, RS)
The Maple 13 'tensor' package generated this solution for the [itex]G_{rr}[/itex] component:
[tex]G_{rr} = \frac{- r \nu'(r) + e^{\lambda(r)} - 1}{r^2}[/tex]
However, the correct solution is: (reference 2 - eq. 4)
[tex]G_{rr} = \frac{e^{-\lambda(r)} (-r \nu'(r) + e^{\lambda(r)} - 1)}{r^2}[/tex]
Can anyone here identify any algorithmic error in my source code?
Reference:
http://www.maplesoft.com/support/help/AddOns/view.aspx?path=tensor/Einstein"
"www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf"[/URL]
Last edited by a moderator: