- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b,\,c,\,d$ be real numbers such that $abcd=1$ and $a+b+c+d>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}$.
Prove that $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}$.
Prove that $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}$.