- #1
dimsun
- 27
- 0
Restmass:
[tex]m_0 = \sqrt{\frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2}}[/tex]
Relativistic mass:
[tex]m_{rel} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}[/tex]
[tex]\sqrt{m_{rel}^2 - \frac{m_{rel}v^2_x}{c^2} -\frac{m_{rel}v^2_y}{c^2} -\frac{m_{rel}v^2_z}{c^2}} = \sqrt{\frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2}}[/tex]
So it seems that the energy-momentum equation must be extended:
[tex]m^2 - s^2_xc^2 - s^2_yc^2 - s^2_zc^2 = \frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2} [/tex]
And that we have to explore the new quantity 's'.
Because of periodicity we don't have to extend the number of dimensions to more then 8.
We can describe this relationship by means of two opposite quaternions.
[tex]m_0 = \sqrt{\frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2}}[/tex]
Relativistic mass:
[tex]m_{rel} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}[/tex]
[tex]\sqrt{m_{rel}^2 - \frac{m_{rel}v^2_x}{c^2} -\frac{m_{rel}v^2_y}{c^2} -\frac{m_{rel}v^2_z}{c^2}} = \sqrt{\frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2}}[/tex]
So it seems that the energy-momentum equation must be extended:
[tex]m^2 - s^2_xc^2 - s^2_yc^2 - s^2_zc^2 = \frac{E^2}{c^4} - \frac{p^2_x}{c^2} - \frac{p^2_y}{c^2} - \frac{p^2_z}{c^2} [/tex]
And that we have to explore the new quantity 's'.
Because of periodicity we don't have to extend the number of dimensions to more then 8.
We can describe this relationship by means of two opposite quaternions.