Is this a mistake in my textbook's answer about induced voltage question?

  • Thread starter Thread starter mymodded
  • Start date Start date
AI Thread Summary
The discussion centers on a potential mistake in a textbook's solution regarding induced voltage in a solenoid. The original solution omits the number of turns in the solenoid, which the user believes should be included in the calculation. The textbook's final answer is proportional to n^2, while the user argues it should be proportional to n^3. After some clarification, it is acknowledged that the user initially misunderstood the context, confirming that the induced magnetic field in the inner solenoid was correctly addressed. The conversation highlights the importance of accurately accounting for the number of turns in solenoid calculations.
mymodded
Messages
29
Reaction score
7
Homework Statement
A long solenoid with cross-sectional area A_1 surrounds another long solenoid with cross-sectional area A_2 < A_1 and resistance R. Both solenoids have the same length and the same number of turns. A current given by ##i=i_{0}cos(\omega t)## is flowing through the outer solenoid. Find an expression for the magnetic field in the inner solenoid due to the induced current.
Relevant Equations
##\Delta V_{ind} = -\frac{d\Phi}{dt}##
##B_{solenoid} = \mu_{0} n i##
My textbook solved it by first finding the induced voltage in the inner solenoid but they found it by saying ##-\Delta V_{ind} = A_{2} \frac{d\Phi}{dt}##, but they did not include the number of turns in the solenoid, but I think they should have done that. their final answer is ##\Large \frac{\mu_{0}^{2} n^{2} A_{2} i_{0} \omega sin(\omega t)}{R}## but I think the right answer should be $$\frac{\mu_{0}^{2} n^{3} l A_{2} i_{0} \omega sin(\omega t)}{R}$$
 
Last edited:
Physics news on Phys.org
mymodded said:
their final answer is ##\Large \frac{\mu_{0}^{2} n^{2} A_{2} i_{0} \omega sin(\omega t)}{R}## but I think the right answer should be $$\frac{\mu_{0}^{2} n^{3} l A_{2} i_{0} \omega sin(\omega t)}{R}$$
The answer should be proportional to ##n^2##, not ##n^3##. Show the details of your calculation so we can help you identify any mistakes.

The answer that was provided to you has some typographical errors, but the ##n^2## is correct.

[EDIT: Nevermind, I was thinking of finding the current in the inner solenoid. You are correct for the induced magnetic field in the inner solenoid.]
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top