- #1
Hall
- 351
- 88
Let ##S## be a set of all polynomials of degree equal to or less than ##n## (n is fixed) and ##p(0)=p(1)##.
Then, a sample element of ##S## would look like:
$$
p(t) = c_0 + c_1t +c_2t^2 + \cdots + c_nt^n
$$
Now, to satisfy ##p(0)=p(1)## we must have
$$
\sum_{i=1}^{n} c_i =0
$$
What could be the possible bases for S? I thought of one of them and it looks like this
$$
A = \{ 1, c_1t +c_2t^2, c_1t +c_2t^2+c_3t^3, \cdots c_1t +c_2t^2 ... +c_nt^n | \sum_{i=1}^{j} c_i =0 ; j=1,2,3 ... n\}
$$
Is A a basis for S? I mean, I'm unable to disprove it.
Then, a sample element of ##S## would look like:
$$
p(t) = c_0 + c_1t +c_2t^2 + \cdots + c_nt^n
$$
Now, to satisfy ##p(0)=p(1)## we must have
$$
\sum_{i=1}^{n} c_i =0
$$
What could be the possible bases for S? I thought of one of them and it looks like this
$$
A = \{ 1, c_1t +c_2t^2, c_1t +c_2t^2+c_3t^3, \cdots c_1t +c_2t^2 ... +c_nt^n | \sum_{i=1}^{j} c_i =0 ; j=1,2,3 ... n\}
$$
Is A a basis for S? I mean, I'm unable to disprove it.