- #1
pwhitey86
- 5
- 0
Hi. I am new to formal proofs. Is the following a legitimate method for proving this assertion by contradiction.
Show [tex]A\cap B = \{\} \Leftrightarrow A \subseteq B^c[/tex]
If [tex]A\cap B \neq \{\} [/tex] then [tex]\exists \ x \ ST \ x \in A \ AND \ x \in B [/tex]
Since [tex]x \in A \ \ \ A \subseteq B^c \Rightarrow x \in B^c[/tex]
[tex]\Rightarrow x \in U \ AND \ x \notin B [/tex]
This is a contradiction and thus no such x exists and therefore
[tex]A\cap B = \{\} \Leftarrow A \subseteq B^c[/tex]
is this half the proof?
Show [tex]A\cap B = \{\} \Leftrightarrow A \subseteq B^c[/tex]
If [tex]A\cap B \neq \{\} [/tex] then [tex]\exists \ x \ ST \ x \in A \ AND \ x \in B [/tex]
Since [tex]x \in A \ \ \ A \subseteq B^c \Rightarrow x \in B^c[/tex]
[tex]\Rightarrow x \in U \ AND \ x \notin B [/tex]
This is a contradiction and thus no such x exists and therefore
[tex]A\cap B = \{\} \Leftarrow A \subseteq B^c[/tex]
is this half the proof?