- #1
rputra
- 35
- 0
I am working on this problem: Show that $\Phi =I +\Delta^2 + \Delta^3$ is invertible, if $\Delta$ is a derivative linear mapping from $P_n$ to itself, $I$ is the identity mapping, where $P_n$ is vector space of one-variable polynomials with complex coefficients.
I would like to solve this problem by using the theorem that says if (a) the dimension of $\Phi$'s domain equals to the dimension of the range, and if (b) $\Phi$ is one-to-one, then $\Phi$ is invertible.
The (a) is obvious, $dim (P_n) = n+1$. For the (b), I would like to find out the kernel of $\Phi$, and the to show that $Ker (\Phi) = \{0\}$ therefore proving the $\Phi$ is indeed one-to-one. But unfortunately I do not know how to get the $Ker(\Phi)$. My understanding is that $\Delta^3$ and $\Delta^2$ are respectively the third second and the second derivative of a polynomial, does this mean I have to resort to differential equation?
Any hint or guidance would be very much appreciated. Thank you for your time and effort.
I would like to solve this problem by using the theorem that says if (a) the dimension of $\Phi$'s domain equals to the dimension of the range, and if (b) $\Phi$ is one-to-one, then $\Phi$ is invertible.
The (a) is obvious, $dim (P_n) = n+1$. For the (b), I would like to find out the kernel of $\Phi$, and the to show that $Ker (\Phi) = \{0\}$ therefore proving the $\Phi$ is indeed one-to-one. But unfortunately I do not know how to get the $Ker(\Phi)$. My understanding is that $\Delta^3$ and $\Delta^2$ are respectively the third second and the second derivative of a polynomial, does this mean I have to resort to differential equation?
Any hint or guidance would be very much appreciated. Thank you for your time and effort.