- #1
Drain Brain
- 144
- 0
please check my work here
$\mathscr{L}[2\sin(bt)\sinh(bt)]$
I know that $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$$\mathscr{L}[2\sin(bt)\left(\frac{e^{bt}-e^{-bt}}{2}\right)]$
$\mathscr{L}[e^{bt}\sin(bt)-e^{-bt}\sin(bt)]$$\mathscr{L}[e^{bt}\sin(bt)]-\mathscr{L}[e^{-bt}\sin(bt)]$$\frac{b}{s^2+b^2}|_{s-->s-b} - \frac{b}{s^2+b^2}|_{s-->s+b}$$\frac{b}{(s-b)^2+b^2}-\frac{b}{(s+b)^2+b^2}$$\frac{b}{(s^2-2bs+2b^2)}-\frac{b}{(s^2+2bs+2b^2)}$
$\frac{b(s^2+2bs+2b^2)-b(s^2-2bs+2b^2)}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$
$\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$---->>>final answer please check this.
if my answer is correct how Am I going to get the inverse laplace of it?
regards and thanks!