- #1
mahler1
- 222
- 0
Homework Statement .
Solve the differential equation: ##(3x^2-y^2)dy-2xydx=0##. The attempt at a solution.
I thought this was an exact differential equation. If I call ##M(x,y)=-2xy## and ##N(x,y)=3x^2-y^2##, then the ODE is an exact differential equation if and only if ##\frac{\partial M}{\partial y}= \frac{\partial N}{\partial x}##. Now, when I compute these two partial derivatives, ##\frac{\partial M}{\partial y}=-2x## and ##\frac{\partial N}{\partial x}=6x## which are clearly different. Am I doing something wrong or is it just that this equation is not exact?
Solve the differential equation: ##(3x^2-y^2)dy-2xydx=0##. The attempt at a solution.
I thought this was an exact differential equation. If I call ##M(x,y)=-2xy## and ##N(x,y)=3x^2-y^2##, then the ODE is an exact differential equation if and only if ##\frac{\partial M}{\partial y}= \frac{\partial N}{\partial x}##. Now, when I compute these two partial derivatives, ##\frac{\partial M}{\partial y}=-2x## and ##\frac{\partial N}{\partial x}=6x## which are clearly different. Am I doing something wrong or is it just that this equation is not exact?