- #1
Superstring
- 120
- 0
[tex]p^2=p_0^2+2m \Delta k[/tex]
I derived it using the following:
[tex]k=\frac{1}{2}mv^2[/tex]
[tex]p=mv[/tex]
[tex]\frac{dk}{dv}=mv=p[/tex]
[tex]\frac{dp}{dv}=m[/tex]
[tex]\frac{dk}{p}=dv[/tex]
[tex]\frac{dp}{m}=dv[/tex]
[tex]\frac{dk}{p}=\frac{dp}{m}[/tex]
[tex]mdk=pdp[/tex]
[tex]\int_{k_0}^{k}mdk=\int_{p_0}^{p}pdp[/tex]
[tex]m\Delta k=\frac{1}{2}(p^2-p_0^2)[/tex]
[tex]p^2=p_0^2+2m \Delta k[/tex]
As far as I can tell it's correct, but I though I'd get a second opinion.
I derived it using the following:
[tex]k=\frac{1}{2}mv^2[/tex]
[tex]p=mv[/tex]
[tex]\frac{dk}{dv}=mv=p[/tex]
[tex]\frac{dp}{dv}=m[/tex]
[tex]\frac{dk}{p}=dv[/tex]
[tex]\frac{dp}{m}=dv[/tex]
[tex]\frac{dk}{p}=\frac{dp}{m}[/tex]
[tex]mdk=pdp[/tex]
[tex]\int_{k_0}^{k}mdk=\int_{p_0}^{p}pdp[/tex]
[tex]m\Delta k=\frac{1}{2}(p^2-p_0^2)[/tex]
[tex]p^2=p_0^2+2m \Delta k[/tex]
As far as I can tell it's correct, but I though I'd get a second opinion.
Last edited: