MHB Is this equation true for positive values of x and y?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Property
AI Thread Summary
The equation $y^2+x*\sqrt{4x^2+y^2}=y^2+\frac{x}{y}*\sqrt{4(\frac{x}{y})^2+1}$ is not true for positive values of x and y. The left side simplifies to $y^2+x \cdot |y| \cdot \sqrt{ \frac{4x^2}{y^2}+1}$, which, under the condition that y is positive, becomes $y^2+x \cdot y \cdot \sqrt{ \frac{4x^2}{y^2}+1}$. This indicates that the two sides of the equation do not equate as initially proposed. The discussion confirms the need for careful evaluation of mathematical expressions involving square roots and ratios. The conclusion is that the equation does not hold true for the specified conditions.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Hello,

I need some aid to see if this true:

$y^2+x*\sqrt{4x^2+y^2}=y^2+\frac{x}{y}*\sqrt{4(\frac{x}{y})^2+1}$ provide that y>0 and x>0.Thank you,

Cbarker1
 
Mathematics news on Phys.org
Cbarker1 said:
Hello,

I need some aid to see if this true:

$y^2+x*\sqrt{4x^2+y^2}=y^2+\frac{x}{y}*\sqrt{4(\frac{x}{y})^2+1}$ provide that y>0 and x>0.Thank you,

Cbarker1

(Wave)

No. It holds that $y^2+x \cdot \sqrt{4x^2+y^2}=y^2+ x \cdot \sqrt{y^2 \left( \frac{4x^2}{y^2}+1\right)}=y^2+x \cdot |y| \cdot \sqrt{ \frac{4x^2}{y^2}+1}$.And provided that $y>0$, $y^2+x \cdot |y| \cdot \sqrt{ \frac{4x^2}{y^2}+1}=y^2+x \cdot y \cdot \sqrt{ \frac{4x^2}{y^2}+1}$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top