- #1
Metal
- 8
- 0
How do I know whether this is convergent or divergent:
Integral of (x³+1)/((sinx)^1/2) dx between 0 and pi/2
I know that this integral is convergent if Lim n->0 of Integral of (x³+1)/((sinx)^1/2)) dx between n and pi/2 exists and is not infinite (why is that?). Otherwise its divergent.
So I thought I should find the antiderivative F of (x³+1)/((sinx)^1/2)) and then calculate F(pi/2) - F(n), the problem being that i don't know how to find this F, and I don't think that this is what I'm supposed to do.
Appreciate any help.
Integral of (x³+1)/((sinx)^1/2) dx between 0 and pi/2
I know that this integral is convergent if Lim n->0 of Integral of (x³+1)/((sinx)^1/2)) dx between n and pi/2 exists and is not infinite (why is that?). Otherwise its divergent.
So I thought I should find the antiderivative F of (x³+1)/((sinx)^1/2)) and then calculate F(pi/2) - F(n), the problem being that i don't know how to find this F, and I don't think that this is what I'm supposed to do.
Appreciate any help.