- #1
paulmdrdo1
- 385
- 0
please correct me with my solution here.
∫cos72xdx = ∫(cos62x cos2x)dx
=∫(1-sin22x)3cos2x
let u = sin2x;
du = cos2xdx
dx = (du/2cos2x)
∫(1-u2)3cos2x*du/2cos2x
1/2∫(1-u2)3*du
1/2∫(1-u2)2*(1-u2)du
1/2∫[(1-3u2-u4-u6]du
1/2∫du-3/2∫u2du-1/2∫u4du-1/2∫u6du
1/2(u)+1/2(u3)-1/10(u5)-1/14(u7)+C
1/2(sin2x)+1/2(sin32x)-1/10(sin52x)-1/14(sin72x)+C
are they correct?
∫cos72xdx = ∫(cos62x cos2x)dx
=∫(1-sin22x)3cos2x
let u = sin2x;
du = cos2xdx
dx = (du/2cos2x)
∫(1-u2)3cos2x*du/2cos2x
1/2∫(1-u2)3*du
1/2∫(1-u2)2*(1-u2)du
1/2∫[(1-3u2-u4-u6]du
1/2∫du-3/2∫u2du-1/2∫u4du-1/2∫u6du
1/2(u)+1/2(u3)-1/10(u5)-1/14(u7)+C
1/2(sin2x)+1/2(sin32x)-1/10(sin52x)-1/14(sin72x)+C
are they correct?