- #1
aruwin
- 208
- 0
Hello.
Could someone check if my solution is correct, please?
Question:
Expand the function into maclaurine series and find its radius of convergence.
$$f(z)=\frac{2z}{(1-z)^2}$$
My solution:
$$f(z)=\frac{2z}{(1-z)^2}=\frac{1}{(1-z)}\frac{2}{(1-z)}\frac{2}{(1-z)^2}$$
Since $$\frac{d}{dz}\frac{1}{1-z}=\frac{1}{(1-z)^2},$$ then
$$f(z)=\sum_{n=0}^{\infty}z^n\times\sum_{n=0}^{\infty}2z^n\times\sum_{n=1}^{\infty}2nz^{n-1}$$
$$f(z)=\sum_{n=0}^{\infty}z^n\times\Bigg(\sum_{n=0}^{\infty}2z^n\times\Bigg(\sum_{n=0}^{\infty}2(n+1)z^n\Bigg)\Bigg)$$
$$f(z)=\sum_{n=0}^{\infty}z^n\times\Bigg(\sum_{n=0}^{\infty}2z^n(n+2)\Bigg)$$
$$f(z)=\sum_{n=0}^{\infty}2z^{2n}(n+2)$$
As for Radius,
$$R=\lim_{{n}\to{\infty}}\Bigg|\frac{n+2}{n+3}\Bigg|=1$$
Could someone check if my solution is correct, please?
Question:
Expand the function into maclaurine series and find its radius of convergence.
$$f(z)=\frac{2z}{(1-z)^2}$$
My solution:
$$f(z)=\frac{2z}{(1-z)^2}=\frac{1}{(1-z)}\frac{2}{(1-z)}\frac{2}{(1-z)^2}$$
Since $$\frac{d}{dz}\frac{1}{1-z}=\frac{1}{(1-z)^2},$$ then
$$f(z)=\sum_{n=0}^{\infty}z^n\times\sum_{n=0}^{\infty}2z^n\times\sum_{n=1}^{\infty}2nz^{n-1}$$
$$f(z)=\sum_{n=0}^{\infty}z^n\times\Bigg(\sum_{n=0}^{\infty}2z^n\times\Bigg(\sum_{n=0}^{\infty}2(n+1)z^n\Bigg)\Bigg)$$
$$f(z)=\sum_{n=0}^{\infty}z^n\times\Bigg(\sum_{n=0}^{\infty}2z^n(n+2)\Bigg)$$
$$f(z)=\sum_{n=0}^{\infty}2z^{2n}(n+2)$$
As for Radius,
$$R=\lim_{{n}\to{\infty}}\Bigg|\frac{n+2}{n+3}\Bigg|=1$$