- #1
solakis1
- 422
- 0
Is the following proof ,proving \(\displaystyle \forall A\forall B[ 0<AB\Longrightarrow (0<A\wedge 0<B)\vee(A<0\wedge B<0)\),correct??
Proof:
Let, 0<ab
Let, ~(0<a& 0<b)...............1
Let , ~(a<0&b<0)...............2
But 0<ab => ~(ab=0) => ~(a=0) and ~(b=0) => ~(a=0)......3
For ,\(\displaystyle 0<a \Longrightarrow\frac{1}{a}<0\Longrightarrow(ab)\frac{1}{a}<0\frac{1}{a}\Longrightarrow b<0\),since 0<ab, \(\displaystyle \Longrightarrow 0<a\wedge0<b\) a contradiction by using (2)
Hence ~(0<a)................4
In a similar way we prove : a<0 => (a<0&b<0) ,a contradiction by using (3)
Hence ~(a<0).................5
Thus from (4) and (5) we have :
~(0<a) and ~(a<0) => ~( 0<a or a<0) => a=o ,a contradictio by using (3)
Hence ~~(0<a & 0<b) => 0<a & 0<b => (0<a &0<b)or( a<0 & b<0)
Proof:
Let, 0<ab
Let, ~(0<a& 0<b)...............1
Let , ~(a<0&b<0)...............2
But 0<ab => ~(ab=0) => ~(a=0) and ~(b=0) => ~(a=0)......3
For ,\(\displaystyle 0<a \Longrightarrow\frac{1}{a}<0\Longrightarrow(ab)\frac{1}{a}<0\frac{1}{a}\Longrightarrow b<0\),since 0<ab, \(\displaystyle \Longrightarrow 0<a\wedge0<b\) a contradiction by using (2)
Hence ~(0<a)................4
In a similar way we prove : a<0 => (a<0&b<0) ,a contradiction by using (3)
Hence ~(a<0).................5
Thus from (4) and (5) we have :
~(0<a) and ~(a<0) => ~( 0<a or a<0) => a=o ,a contradictio by using (3)
Hence ~~(0<a & 0<b) => 0<a & 0<b => (0<a &0<b)or( a<0 & b<0)