Is This Partial Fraction Decomposition Set Up Correct?

In summary: Re: partial fraction decomostionIn summary, the partial fraction decomposition of 3x^2+x-18 is (Ax+B)x-(x^2+9)C. When x= -1, 3x^2+ x- 18= 3(1)+ (-1)- 18= 3- 19= -16.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}
+\frac{C}{x}
& &(2)&
\end{align}

$\textit{just seeing if this is set up ok before finding values} $
 
Last edited:
Physics news on Phys.org
  • #2
Re: partial fraction decomostion

karush said:
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}
+\frac{C}{x^2+9}
+\frac{D}{x}
& &(2)&
\end{align}

$\textit{just seeing if this is set up ok before finding values} $
You are fine but you already accounted for the constant over x^2 + 9 when you included the B term. You don't need C.

-Dan
 
  • #3
Re: partial fraction decomostion

ok i rewrote OP
thot i could slip under the wire

I'll proceed..
 
  • #4
Re: partial fraction decomostion

$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}-\frac{C}{x}& &(2)& \\
\\
&&3x^2+x-18&=(Ax+B)x-(x^2+9)C & &(3)& \\
&& &=Ax^2+Bx-Cx^2-9C & &(4)&\\
&x=0& -18&=-9C & &(5)&\\
&& 2&=C & &(6)&\\
&x=1& -14&=A+B-20 & &(7)&\\
&& 6&=A+B & &(8)&\\
&x=-1& && &(9)&\\
&& -14&=A-B-16 & &(10)&\\
&& 4&=A-B & &(11)& \\
&(8)+(11)& A&=5 \\
&\therefore (8)& B&=1
\end{align}

$\textit{just seeing if this is correct} $
 
  • #5
Re: partial fraction decomostion

I would proceed only slight differently:

\(\displaystyle \frac{3x^2+x-18}{x^3+9x}=\frac{3x^2+x-18}{x(x^2+9)}=\frac{A}{x}+\frac{Bx+C}{x^2+9}\)

This implies

\(\displaystyle 3x^2+x-18=A(x^2+9)+(Bx+C)x=(A+B)x^2+Cx+9A\)

Equating coefficients, we see:

\(\displaystyle 9A=-18\implies A=-2\)

\(\displaystyle C=1\)

\(\displaystyle A+B=3\implies B=5\)

Hence:

\(\displaystyle \frac{3x^2+x-18}{x^3+9x}=-\frac{2}{x}+\frac{5x+1}{x^2+9}\)

This agrees with your result. :D
 
  • #6
Re: partial fraction decomostion

\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
\\
&& &=5\int\frac{x}{x^2+9}
+\int\frac{1}{x^2+9}
-2\int\frac{1}{x}& &(2)&\\
\\
&& &=\frac{5\ln\left({x^2+9}\right)}{2}
+\frac{\arctan(\frac{x}{3})}{3}
+2\ln\left({|x|}\right)+C & &(3)&
\end{align}
 
Last edited:
  • #7
Re: partial fraction decomostion

What happened to the coefficient of $-2$ in front of the second log function? You could use a matrix I suppose, but this one is simple enough to make it unnecessary or beneficial, IMHO.
 
  • #8
Re: partial fraction decomostion

I corrected post 6

my excuse: tablet with small screen
my reason: none
 
  • #9
Re: partial fraction decomostion

karush said:
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}-\frac{C}{x}& &(2)& \\
\\
&&3x^2+x-18&=(Ax+B)x-(x^2+9)C & &(3)& \\
&& &=Ax^2+Bx-Cx^2-9C & &(4)&\\
&x=0& -18&=-9C & &(5)&\\
&& 2&=C & &(6)&\\
&x=1& -14&=A+B-20 & &(7)&\\
&& 6&=A+B & &(8)&\\
&x=-1& && &(9)&\\
&& -14&=A-B-16 & &(10)&\\

When x= -1, [tex]3x^2+ x- 18= 3(1)+ (-1)- 18= 3- 19= -16[/tex]

&& 4&=A-B & &(11)& \\
&(8)+(11)& A&=5 \\
&\therefore (8)& B&=1
\end{align}

$\textit{just seeing if this is correct} $
 

FAQ: Is This Partial Fraction Decomposition Set Up Correct?

What is partial fraction decomposition?

Partial fraction decomposition is a method used in calculus to decompose a rational function into simpler fractions. This is done by breaking down the fraction into smaller fractions with denominators that are irreducible polynomials.

Why is partial fraction decomposition important?

Partial fraction decomposition is important because it allows us to integrate rational functions that would otherwise be difficult or impossible to integrate. It also helps us to simplify complex expressions and solve equations involving rational functions.

How do you perform partial fraction decomposition?

To perform partial fraction decomposition, first factor the denominator of the rational function into irreducible polynomials. Then, set up a system of equations using the coefficients of the fractions. Solve for the unknown coefficients by equating the numerators of the original rational function with the numerators of the decomposed fractions.

What are the different types of partial fraction decompositions?

The two main types of partial fraction decompositions are proper and improper. In a proper decomposition, the degree of the numerator is less than the degree of the denominator. In an improper decomposition, the degree of the numerator is equal to or greater than the degree of the denominator.

When is partial fraction decomposition not possible?

Partial fraction decomposition is not possible when the denominator of the rational function cannot be factored into irreducible polynomials. It is also not possible when the degree of the numerator is greater than or equal to the degree of the denominator.

Similar threads

Replies
6
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
8
Views
1K
Back
Top