Is this statement acceptable? (time derivative of a rotating vector)

  • #1
Clockclocle
28
1
Homework Statement
Is this statement acceptable?
Relevant Equations
..........
Capture.PNG


I understand the approximation statement but he divide the |delta t| in the left but only delta t on the right. Is it true because delta phi would have the same sign as delta t ?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Yes. By definition ##\Delta \phi## is positive and the angle increases in the direction of the arrow in the top figure. ##\Delta t## is always positive.
 
  • Like
Likes Gavran
  • #3
kuruman said:
Yes. By definition ##\Delta \phi## is positive and the angle increases in the direction of the arrow in the top figure. ##\Delta t## is always positive.
He also use the fact that lim |##\Delta A##/##\Delta t##| = |lim ##\Delta A##/##\Delta t##|. Is that accepted?
 
  • #4
There is a more formal way to show the same thing which I prefer.

You have a vector ##\mathbf A## that has constant magnitude ##A## and direction ##\mathbf {\hat a}## that changes with time. You can write the vector as its constant magnitude times the unit vector specifying the direction, ##\mathbf A=A~\mathbf {\hat a}##. Now $$\frac{d\mathbf A}{dt}=A\frac{d\mathbf {\hat a}}{dt}.$$ To find the derivative of the unit vector ##\mathbf a##, consider the drawing on the right. A
Unit Vectors.png
unit vector in the direction of changing angle ##\theta## is perpendicular to ##\mathbf {\hat a}.## In terms of the fixed Cartesian unit vectors
$$\begin{align} & \mathbf {\hat a}=\cos\!\theta~\mathbf {\hat x}+\sin\!\theta~\mathbf {\hat y} \\
& \mathbf {\hat {\theta}}=-\sin\!\theta~\mathbf {\hat x}+\cos\!\theta~\mathbf {\hat y}
\end{align}$$Now from equation (1) $$\frac{d\mathbf {\hat a}}{dt}=\frac{d\theta}{dt}(-\sin\!\theta~\mathbf {\hat x}+\cos\!\theta~\mathbf {\hat y})=\frac{d\theta}{dt}\mathbf {\hat{\theta}}$$ and the time rate of change of the constant-magnitude vector ##\mathbf A## is $$\frac{d\mathbf A}{dt}=A\frac{d\mathbf {\hat a}}{dt}=A\frac{d\theta}{dt}\mathbf {\hat{\theta}}.$$
 
  • Like
Likes PhDeezNutz
  • #5
Clockclocle said:
He also use the fact that lim |##\Delta A##/##\Delta t##| = |lim ##\Delta A##/##\Delta t##|. Is that accepted?
Not in general. Consider ##\lim _{x\rightarrow 0}(-1)^{\lfloor \frac 1x\rfloor}##.
 

Similar threads

Back
Top