- #1
IniquiTrance
- 190
- 0
To compute the flux integral over a cylinder's walls oriented along the z axis:
Can I do:
[tex]\int\int \vec{F}\cdot\nabla G(x,y,z) dA[/tex]
[tex]G(x,y,z) = r^{2}=x^{2}+y^{2}[/tex]
[tex]\nabla G = <2x, 2y, 0>[/tex]
[tex]\int\int \vec{F}\cdot <2x,2y,0> dA[/tex]
Is this a correct approach?
Can I do:
[tex]\int\int \vec{F}\cdot\nabla G(x,y,z) dA[/tex]
[tex]G(x,y,z) = r^{2}=x^{2}+y^{2}[/tex]
[tex]\nabla G = <2x, 2y, 0>[/tex]
[tex]\int\int \vec{F}\cdot <2x,2y,0> dA[/tex]
Is this a correct approach?