- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Show that the complex function
$$F(z) = \frac{1}{\pi}\int_0^1 \int_{-\pi}^\pi \frac{r}{re^{i\theta} + z}\, d\theta\, dr$$
is anti-holomorhpic (i.e., the conjugate $\bar{F}$ is holomorphic) in the open unit disc, $\Bbb D$, and holomoprhic in complement $\Bbb C \setminus \bar{\Bbb D}$ of the closed unit disc.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Show that the complex function
$$F(z) = \frac{1}{\pi}\int_0^1 \int_{-\pi}^\pi \frac{r}{re^{i\theta} + z}\, d\theta\, dr$$
is anti-holomorhpic (i.e., the conjugate $\bar{F}$ is holomorphic) in the open unit disc, $\Bbb D$, and holomoprhic in complement $\Bbb C \setminus \bar{\Bbb D}$ of the closed unit disc.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!