- #1
Rene Jimenez
Based on the article below I have been having a discussion with a friend about how thoughts arise (where they are created in the organism). We read the article very differently. He thinks that thought is not created exclusively in the brain, while I think the brain is the seat of all our mental abilities.
From my point of view that article is only a discussion of how the brain is organized and how it gets it`s input in order to develop and it doesn`t put the basis of creation outside the brain.
I hope someone here can take a look at the article and give me their comments.
Below are only excerpts of the original article since it is very long:
=========================================================
"The bodily basis of thought", written by Jay A. Seitz at
Department of Political Science & Psychology, York College, City University of New York in april 2000.
It has not been until recently that social and neuroscientists have seriously considered the nature and mechanisms of thought and cognition outside of the traditional domains of language and logic. Indeed, the latter two have often been thought of as two sides of the same proverbial coin with different systems of logic at various developmental periods undergirding the foundation of languages and numbers (Piaget, 1952). Suggest to one fortified by this belief that logic is not the sole province of these areas of cognition and immediately one is met with the usual recognizable incredulity: "Ah, but
you are simply using the word inappropriately outside of its normal extension", goes the complaint. Yet, one is reminded of Alice's response in Lewis Carroll's childhood novel. "When I use a word", Humpty Dumpty said, "it means just what I choose it to mean .
. neither more nor less". "The question is", said Alice, "whether you can make words mean so many different things." "The question is," said Humpty Dumpty, "which is to be the master .. that's all" (Carroll, 1872/1998).
Early theorists of sensorimotor learning and development, to their credit, recognized the central importance of movement in cognitive development (e.g., Piaget, 1952). Unfortunately, the main thrust of these theories absorbs sensorimotor learning into higher systems of thought draining it of its cognitive uniqueness and centrality in early as well as later learning. This is surprising given that the endpoint of any intellective activity is always some movement, action or activity (Montessori, 1949/1967). Indeed, movement occupies a central position in human cognitive activity (Laban, 1966). To be sure, it has been recently proposed that there is an elaborate
information-processing system involved in movement with extensive bi-directional pathways to parallel systems in the brain that are involved in planning, reasoning, and emotion ( Leiner et al., 1986; Leiner et al., 1989; Leiner and Leiner). The cerebellum, traditionally viewed as directing and controlling voluntary movement may play a much larger role in thought itself ( Ito; Ito and Ito). The resulting "information-processing" system could conceivably go beyond the traditional control of motor functions subserved by the cerebral motor cortex to enable the manipulation of kinesthetic ideas (Leiner, Leiner & Dow, 1986). In effect, it appears that we "think" kinesically too (Gardner, 1993; Iverson & Goldin-Meadow, 1998; Kennedy, 1997; Nicoladis, Mayberry & Genesee, 1999; Seitz, 1992; Seitz, 1993; Seitz, 1994a; Seitz, 1994b and Seitz, 1996). For example, it has been postulated that thinking is an advanced form of skilled behavior that has evolved from earlier modes of flexible adaptation to the environment ( Bartlett, 1958), that the body is central to mathematical understanding (Lakoff & Nunez, 1997), that speech and gesture form parallel computational systems (McNeill, 1985; McNeill, 1989 and McNeill), and that mental practice alone improves physical skills ( Hinshaw, 1992; Ogles, Lynn, Masters, Hoefel & Marsden, 1994).
In terms of development, nonverbal behavior is central to expression and communication. Infants and young children learn to communicate with gestures before they learn to speak (Bruner, 1983) and this mode of communication continues into adulthood where a large body of kinesic behaviors augments or replaces language (e.g., illustrators, regulators, affect displays, diectics, metaphoric gestures, emblems, and a huge class of procedural knowledge and skills) ( Ekman & Friesen, 1969; McNeill, 1992). To be sure, there have been recent arguments made for the gestural origins of language and the fact that both speech and hand control originate from the same neural systems (Corballis, 1999). Choreography and dance, sports, and craftsmanship are but a few examples of nonverbal abilities. Evidences from the study of the deaf and sign languages (Klima & Bellugi, 1980), the blind and the reading of Braille text (Seitz, 1993), and use of body therapies (Feldenkrais, 1991), are a few other examples. Historically, the suppression of sign language use among the deaf has resulted in a significant deterioration in the intellectual achievement of deaf children (Sacks, 1990) and developmentally, in delays in cognitive and social development (Bebko, Burke, Craven & Sarlo, 1992). With regard to the blind, Braille is essentially the "reading" of a tactile code in which the number and spatial forms of the raised dots are critical (Hardman, Drew, Egan & Wolf, 1993). In human cultures, facial expression, gesture and posture, gaze, spatial behavior among conspecifics, touch, bodily movements, vocalization, smell, and appearance are essential and basic to communication (Argyle, 1989). Even Charles Darwin went so far as to suggest that, for example, head shaking in infants originates in the mother.child relationship (Darwin, 1872/1965).
The experience of music is an elegant specific example of the body in thought: Loudness, tonal colors, musical beat and tempo, dynamic changes, melodic phrasing and contours, chromatic harmonies, musical accents, accelerando, syncopation, rhythmic ostinato, among other aspects, form the bodily basis of meaning in the musical domain. Indeed, pedagogical practices such as the Dalcroze, Kodaly, Orff, and Suzuki methods capitalize on the fact that basic elements of music (rhythm and musical dynamics, intervallic relationships such as pitch and melody, and sonority) can be most
effectively taught through physical motion using such devices as rhythm, rhythmic solfege, and improvisation (Jaques-Dalcroze, 1930/1976).
One reason for the importance of studying motor abilities is the recognition that evidence from the study of children's and adult's motor capacities can address long-standing questions in other psychological domains such as the nature of human learning and memory, planning, and categorization, to name a few. Another reason is that it throws into relief some of the major problems with the contemporary "representational" view of the mind. Classical cognitivist and connectionist models posit a Cartesian disembodiment of mind assuming that brain events can adequately explain thought and related notions such as intellect. While much has been written about the subject, little is known about how the mind actually represents anything. That is to say, how does the brain give rise to mental states that "represent" the external world (McGuinn, 1999)? One problem with the representational view is that it presumes an hierarchical system in which the brain is a distributor of commands and the body is an ambassador of purpose or, to put it another way, the brain regulates our bodies as does a CEO a corporation:
the knowledge flow is one way and top-down. Linked to this view is the computer metaphor of the mind in which thinking is solely a brain-based (or CPU-based) activity. This standard view has been popularized in such early movies as "Invaders from Mars" (1963) in which a head in a glassfilled dome commands a motley assortment of unintelligent drones as they attempt to invade and take over the human world.
From my point of view that article is only a discussion of how the brain is organized and how it gets it`s input in order to develop and it doesn`t put the basis of creation outside the brain.
I hope someone here can take a look at the article and give me their comments.
Below are only excerpts of the original article since it is very long:
=========================================================
"The bodily basis of thought", written by Jay A. Seitz at
Department of Political Science & Psychology, York College, City University of New York in april 2000.
It has not been until recently that social and neuroscientists have seriously considered the nature and mechanisms of thought and cognition outside of the traditional domains of language and logic. Indeed, the latter two have often been thought of as two sides of the same proverbial coin with different systems of logic at various developmental periods undergirding the foundation of languages and numbers (Piaget, 1952). Suggest to one fortified by this belief that logic is not the sole province of these areas of cognition and immediately one is met with the usual recognizable incredulity: "Ah, but
you are simply using the word inappropriately outside of its normal extension", goes the complaint. Yet, one is reminded of Alice's response in Lewis Carroll's childhood novel. "When I use a word", Humpty Dumpty said, "it means just what I choose it to mean .
. neither more nor less". "The question is", said Alice, "whether you can make words mean so many different things." "The question is," said Humpty Dumpty, "which is to be the master .. that's all" (Carroll, 1872/1998).
Early theorists of sensorimotor learning and development, to their credit, recognized the central importance of movement in cognitive development (e.g., Piaget, 1952). Unfortunately, the main thrust of these theories absorbs sensorimotor learning into higher systems of thought draining it of its cognitive uniqueness and centrality in early as well as later learning. This is surprising given that the endpoint of any intellective activity is always some movement, action or activity (Montessori, 1949/1967). Indeed, movement occupies a central position in human cognitive activity (Laban, 1966). To be sure, it has been recently proposed that there is an elaborate
information-processing system involved in movement with extensive bi-directional pathways to parallel systems in the brain that are involved in planning, reasoning, and emotion ( Leiner et al., 1986; Leiner et al., 1989; Leiner and Leiner). The cerebellum, traditionally viewed as directing and controlling voluntary movement may play a much larger role in thought itself ( Ito; Ito and Ito). The resulting "information-processing" system could conceivably go beyond the traditional control of motor functions subserved by the cerebral motor cortex to enable the manipulation of kinesthetic ideas (Leiner, Leiner & Dow, 1986). In effect, it appears that we "think" kinesically too (Gardner, 1993; Iverson & Goldin-Meadow, 1998; Kennedy, 1997; Nicoladis, Mayberry & Genesee, 1999; Seitz, 1992; Seitz, 1993; Seitz, 1994a; Seitz, 1994b and Seitz, 1996). For example, it has been postulated that thinking is an advanced form of skilled behavior that has evolved from earlier modes of flexible adaptation to the environment ( Bartlett, 1958), that the body is central to mathematical understanding (Lakoff & Nunez, 1997), that speech and gesture form parallel computational systems (McNeill, 1985; McNeill, 1989 and McNeill), and that mental practice alone improves physical skills ( Hinshaw, 1992; Ogles, Lynn, Masters, Hoefel & Marsden, 1994).
In terms of development, nonverbal behavior is central to expression and communication. Infants and young children learn to communicate with gestures before they learn to speak (Bruner, 1983) and this mode of communication continues into adulthood where a large body of kinesic behaviors augments or replaces language (e.g., illustrators, regulators, affect displays, diectics, metaphoric gestures, emblems, and a huge class of procedural knowledge and skills) ( Ekman & Friesen, 1969; McNeill, 1992). To be sure, there have been recent arguments made for the gestural origins of language and the fact that both speech and hand control originate from the same neural systems (Corballis, 1999). Choreography and dance, sports, and craftsmanship are but a few examples of nonverbal abilities. Evidences from the study of the deaf and sign languages (Klima & Bellugi, 1980), the blind and the reading of Braille text (Seitz, 1993), and use of body therapies (Feldenkrais, 1991), are a few other examples. Historically, the suppression of sign language use among the deaf has resulted in a significant deterioration in the intellectual achievement of deaf children (Sacks, 1990) and developmentally, in delays in cognitive and social development (Bebko, Burke, Craven & Sarlo, 1992). With regard to the blind, Braille is essentially the "reading" of a tactile code in which the number and spatial forms of the raised dots are critical (Hardman, Drew, Egan & Wolf, 1993). In human cultures, facial expression, gesture and posture, gaze, spatial behavior among conspecifics, touch, bodily movements, vocalization, smell, and appearance are essential and basic to communication (Argyle, 1989). Even Charles Darwin went so far as to suggest that, for example, head shaking in infants originates in the mother.child relationship (Darwin, 1872/1965).
The experience of music is an elegant specific example of the body in thought: Loudness, tonal colors, musical beat and tempo, dynamic changes, melodic phrasing and contours, chromatic harmonies, musical accents, accelerando, syncopation, rhythmic ostinato, among other aspects, form the bodily basis of meaning in the musical domain. Indeed, pedagogical practices such as the Dalcroze, Kodaly, Orff, and Suzuki methods capitalize on the fact that basic elements of music (rhythm and musical dynamics, intervallic relationships such as pitch and melody, and sonority) can be most
effectively taught through physical motion using such devices as rhythm, rhythmic solfege, and improvisation (Jaques-Dalcroze, 1930/1976).
One reason for the importance of studying motor abilities is the recognition that evidence from the study of children's and adult's motor capacities can address long-standing questions in other psychological domains such as the nature of human learning and memory, planning, and categorization, to name a few. Another reason is that it throws into relief some of the major problems with the contemporary "representational" view of the mind. Classical cognitivist and connectionist models posit a Cartesian disembodiment of mind assuming that brain events can adequately explain thought and related notions such as intellect. While much has been written about the subject, little is known about how the mind actually represents anything. That is to say, how does the brain give rise to mental states that "represent" the external world (McGuinn, 1999)? One problem with the representational view is that it presumes an hierarchical system in which the brain is a distributor of commands and the body is an ambassador of purpose or, to put it another way, the brain regulates our bodies as does a CEO a corporation:
the knowledge flow is one way and top-down. Linked to this view is the computer metaphor of the mind in which thinking is solely a brain-based (or CPU-based) activity. This standard view has been popularized in such early movies as "Invaders from Mars" (1963) in which a head in a glassfilled dome commands a motley assortment of unintelligent drones as they attempt to invade and take over the human world.