- #1
zetafunction
- 391
- 0
would it be valid (in the sense of residue theorem ) the following evaluation of the divergent integral ?
[tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}-a^{2}}= \frac{ \pi i}{a} [/tex]
also could we differentiate with respect to [tex] a^{2} [/tex] inside the integral above to calculate
[tex] \int_{-\infty}^{\infty} \frac{dx}{(x^{2}-a^{2})^{2}} [/tex]
[tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}-a^{2}}= \frac{ \pi i}{a} [/tex]
also could we differentiate with respect to [tex] a^{2} [/tex] inside the integral above to calculate
[tex] \int_{-\infty}^{\infty} \frac{dx}{(x^{2}-a^{2})^{2}} [/tex]