- #1
karush
Gold Member
MHB
- 3,269
- 5
Use factor theorem and syntheitc division and its conjugate to decide whether the second polynomial is a factor of the first
$x^3-5x^2+3x+1;\quad x+1$
\item \textit{apply synthetic division}
\item$\begin{array}{c|rrrrr}
1 &1 &-5 &3 &1\\
& &1 &-4 &-1\\
\hline &1 &-4 &-1 &0
\end{array}$
$(x-1)$ so $x^2-4x-1$
$\begin{array}{rl}
x &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
\textsf{a,b,c} &=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(1)(-1)}}{2(-1)}
=\dfrac{4\pm\sqrt{20}}{-2}
=\dfrac{4\pm 2\sqrt{5}}{2}
=2+\sqrt{5}\\
\textsf{hence} &x=1,-1,2+\sqrt{5}
\end{array}$
my first pass thru this...
actually I didn't get what the conjugate thing was about?
$x^3-5x^2+3x+1;\quad x+1$
\item \textit{apply synthetic division}
\item$\begin{array}{c|rrrrr}
1 &1 &-5 &3 &1\\
& &1 &-4 &-1\\
\hline &1 &-4 &-1 &0
\end{array}$
$(x-1)$ so $x^2-4x-1$
$\begin{array}{rl}
x &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
\textsf{a,b,c} &=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(1)(-1)}}{2(-1)}
=\dfrac{4\pm\sqrt{20}}{-2}
=\dfrac{4\pm 2\sqrt{5}}{2}
=2+\sqrt{5}\\
\textsf{hence} &x=1,-1,2+\sqrt{5}
\end{array}$
my first pass thru this...
actually I didn't get what the conjugate thing was about?