MHB Is x^(2/3)(5/2-x) a Continuous Function for All Values of x?

AI Thread Summary
The function x^(2/3)(5/2 - x) is continuous for all values of x, despite appearing disjointed at x = 0. The limit as x approaches 0 is 0 from both sides, confirming continuity at that point. Both components, x^(2/3) and (5/2 - x), are continuous functions, which means their product is also continuous. However, there is a cusp at x = 0, indicating that while the function is continuous, it is not differentiable at that point. Understanding the continuity of functions often involves analyzing their algebraic components rather than relying solely on first principles.
tmt1
Messages
230
Reaction score
0
Is $$x^\frac{2}{3} (\frac{5}{2} - x)$$ a continuous function for all values of x?

It seems disjointed at $x = 0$ but the limit as x approaches 0 is 0 from both sides of x.
 
Mathematics news on Phys.org
tmt said:
Is $$x^\frac{2}{3} (\frac{5}{2} - x)$$ a continuous function for all values of x?

It seems disjointed at $x = 0$ but the limit as x approaches 0 is 0 from both sides of x.

Product of two continuous functions is continuous. Both $x^{2/3}$ and $5/2-x$ are continuous, and thus $x^{2/3}(5/2-x)$ is also continuous.

In general, when face with the problem of figuring out whether or not a certain function is continuous, one should use the first principles only as a last resort. One should try to break down the problem into pieces by identifying the algebraic components of the function, that is seeing if the function is sum or product of ratio of two continuous functions. Then one should try to see if the function can be written as a composite of two continuous functions, etc.
 
There is a cusp at x= 0. The function is continuous at x= 0 but not differentiable there.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top